REVIEW ARTICLE

Blow-up behavior of Hammerstein-type delay Volterra integral equations

  • Zhanwen YANG , 1 ,
  • Hermann BRUNNER 2
Expand
  • 1. Science Research Center, Academy of Fundamental and Interdisciplinary Science; Department of Mathematics, Harbin Institute of Technology, Harbin 150001, China
  • 2. Department of Mathematics, Hong Kong Baptist University, Hong Kong SAR, China; Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John’s, NL A1C 557, Canada

Received date: 06 Apr 2012

Accepted date: 23 Aug 2012

Published date: 01 Apr 2013

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

We consider the blow-up behavior of Hammerstein-type delay Volterra integral equations (DVIEs). Two types of delays, i.e., vanishing delay (pantograph delay) and non-vanishing delay (constant delay), are considered. With the same assumptions of Volterra integral equations (VIEs), in a similar technology to VIEs, the blow-up conditions of the two types of DVIEs are given. he blow-up behaviors of DVIEs with non-vanishing delay vary with different nitial functions and the length of the lag, while DVIEs with pantograph delay wn the same blow-up behavior of VIEs. Some examples and applications to elay differential equations illustrate this influence.

Cite this article

Zhanwen YANG , Hermann BRUNNER . Blow-up behavior of Hammerstein-type delay Volterra integral equations[J]. Frontiers of Mathematics in China, 2013 , 8(2) : 261 -280 . DOI: 10.1007/s11464-013-0293-y

1
Banaś J. An existence theorem for nonlinear Volterra integral equation with deviating argument. Rend Circ Mat Palermo, 1986, 35: 82-89

DOI

2
Bélair J. Population models with state-dependent delays. In: Arino O, Axelrod D E, Kimmel M, eds. Mathematical Population Dynamics. Lecture Notes in Pure and Appl Math, vol 131. New York: Marcel Dekker, 1991, 165-176

3
Bownds J M, Cushing J M, Schutte R. Existence, uniqueness, and extendibility of solutions of Volterra integral systems with multiple, variable lags. Funkcial Ekvac, 1976, 19: 101-111

4
Brauer F, van den Driessche P. Some directions for mathematical epidemiology. In: Ruan S, Wolkowicz G S K, Wu J, eds. Dynamical Systems and Their Applications in Biology (Cape Breton, 2001). Fields Institute Communications, Vol 36. Providence: Amer Math Soc, 2003, 95-112

5
Brunner H. Collocation Methods for Volterra Integral and Related Functional Equations. Cambridge Monographs on Applied and Computational Mathematics, Vol 15. Cambridge: Cambridge University Press, 2004

6
Brunner H, Yang Z W. Blow-up behavior of Hammerstein-type Volterra integra equations. J Integral Equations Appl (to appear)

7
Busenberg S, Cooke K L. The effect of integral conditions in certain equations modelling epidemics and population growth. J Math Biol, 1980, 10: 13-32

DOI

8
Cañada A, Zertiti A. Method of upper and lower solutions for nonlinear delay integral equations modelling epidemics and population growth. Math Models Methods Appl Sci, 1994, 4: 107-119

DOI

9
Cañada A, Zertiti A. Systems of nonlinear delay integral equations modelling population growth in a periodic environment. Comment Math Univ Carolin, 1994, 35: 633-644

10
Cardone A, Del Prete I, Nitsch C. Gaussian direct quadrature methods for double delay Volterra integral equations. Electron Trans Numer Anal, 2009, 35: 201-216

11
Chambers Ll G. Some properties of the functional equation ϕ(x) = f(x) + ∫0λxg(x, y, ϕ(y))dy.Internat J Math Sci, 1990, 14: 27-44

DOI

12
Cooke K L. An epidemic equation with immigration. Math Biosci, 1976, 29: 135-158

DOI

13
Cooke K L, Yorke J A. Some equations modelling growth processes and epidemics. Math Biosci, 1973, 16: 75-101

DOI

14
Ezzinbi K, Jazar M. Blow-up Results for some nonlinear delay differential equations. Positivity, 2006, 10: 329-341

DOI

15
Golaszewska A, Turo J. On nonlinear Volterra integral equations with state dependent delays in several variables. Z Anal Anwend, 2010, 29: 91-106

DOI

16
Hethcote H W, van den Driessche P. Two SIS epidemiologic models with delays. J Math Biol, 2000, 40: 3-26

DOI

17
Linz P. Analytical and Numerical Methods for Volterra Equations. Philadelphia: SIAM, 1985

DOI

18
Malolepszy T. Nonlinear Volterra integral equations and the Schrŏder functional equation. Nonlinear Anal, 2011, 74: 424-432

DOI

19
Metz J A J, Diekmann O. The Dynamics of Physiologically Structured Populations. Lecture Notes in Biomath, Vol 68. Berlin-Heidelberg: Springer-Verlag, 1986

20
Miller R K. Nonlinear Volterra Integral Equations. Menlo Park: W A Benjamin, 1971

21
Mydlarczyk W. The blow-up solutions of integral equations. Colloq Math, 1999, 79: 147-156

22
Olmstead W E. Ignition of a combustible half space. SIAMJ Appl Math, 1983, 43: 1-15

DOI

23
Smith H L. On periodic solutions of a delay integral equation modelling epidemics. J Math Biol, 1977, 4: 69-80

DOI

24
Waltham P. Deterministic Threshold Models in the Theory of Epidemics. Lecture Notes in Biomath, Vol 1. Berlin-Heidelberg: Springer-Verlag, 1974

Options
Outlines

/