Blow-up behavior of Hammerstein-type delay Volterra integral equations

Zhanwen Yang , Hermann Brunner

Front. Math. China ›› 2013, Vol. 8 ›› Issue (2) : 261 -280.

PDF (160KB)
Front. Math. China ›› 2013, Vol. 8 ›› Issue (2) : 261 -280. DOI: 10.1007/s11464-013-0293-y
Research Article
REVIEW ARTICLE

Blow-up behavior of Hammerstein-type delay Volterra integral equations

Author information +
History +
PDF (160KB)

Abstract

We consider the blow-up behavior of Hammerstein-type delay Volterra integral equations (DVIEs). Two types of delays, i.e., vanishing delay (pantograph delay) and non-vanishing delay (constant delay), are considered. With the same assumptions of Volterra integral equations (VIEs), in a similar technology to VIEs, the blow-up conditions of the two types of DVIEs are given. The blow-up behaviors of DVIEs with non-vanishing delay vary with different initial functions and the length of the lag, while DVIEs with pantograph delay own the same blow-up behavior of VIEs. Some examples and applications to delay differential equations illustrate this influence.

Keywords

Delay Volterra integral equation (DVIE) / non-vanishing delay / vanishing delay / blow-up of solution

Cite this article

Download citation ▾
Zhanwen Yang, Hermann Brunner. Blow-up behavior of Hammerstein-type delay Volterra integral equations. Front. Math. China, 2013, 8(2): 261-280 DOI:10.1007/s11464-013-0293-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Banaś J. An existence theorem for nonlinear Volterra integral equation with deviating argument. Rend Circ Mat Palermo, 1986, 35: 82-89

[2]

Bélair J. Arino O, Axelrod D E, Kimmel M. Population models with state-dependent delays. Mathematical Population Dynamics. Lecture Notes in Pure and Appl Math, vol 131, 1991, New York: Marcel Dekker 165 176

[3]

Bownds J M, Cushing J M, Schutte R. Existence, uniqueness, and extendibility of solutions of Volterra integral systems with multiple, variable lags. Funkcial Ekvac, 1976, 19: 101-111

[4]

Brauer F, van den Driessche P. Ruan S, Wolkowicz G S K, Wu J. Some directions for mathematical epidemiology. Dynamical Systems and Their Applications in Biology (Cape Breton, 2001). Fields Institute Communications, Vol 36, 2003, Providence: Amer Math Soc 95 112

[5]

Brunner H. Collocation Methods for Volterra Integral and Related Functional Equations, 2004, Cambridge: Cambridge University Press

[6]

Brunner H, Yang Z W. Blow-up behavior of Hammerstein-type Volterra integral equations. J Integral Equations Appl (to appear)

[7]

Busenberg S, Cooke K L. The effect of integral conditions in certain equations modelling epidemics and population growth. J Math Biol, 1980, 10: 13-32

[8]

Cañada A, Zertiti A. Method of upper and lower solutions for nonlinear delay integral equations modelling epidemics and population growth. Math Models Methods Appl Sci, 1994, 4: 107-119

[9]

Cañada A, Zertiti A. Systems of nonlinear delay integral equations modelling population growth in a periodic environment. Comment Math Univ Carolin, 1994, 35: 633-644

[10]

Cardone A, Del Prete I, Nitsch C. Gaussian direct quadrature methods for double delay Volterra integral equations. Electron Trans Numer Anal, 2009, 35: 201-216

[11]

Chambers Ll G. Some properties of the functional equation ϕ(x) = f(x) + Σ0 λxg(x, y, ϕ(y))dy. Internat J Math Sci, 1990, 14: 27-44

[12]

Cooke K L. An epidemic equation with immigration. Math Biosci, 1976, 29: 135-158

[13]

Cooke K L, Yorke J A. Some equations modelling growth processes and epidemics. Math Biosci, 1973, 16: 75-101

[14]

Ezzinbi K, Jazar M. Blow-up Results for some nonlinear delay differential equations. Positivity, 2006, 10: 329-341

[15]

Gołaszewska A, Turo J. On nonlinear Volterra integral equations with state dependent delays in several variables. Z Anal Anwend, 2010, 29: 91-106

[16]

Hethcote H W, van den Driessche P. Two SIS epidemiologic models with delays. J Math Biol, 2000, 40: 3-26

[17]

Linz P. Analytical and Numerical Methods for Volterra Equations, 1985, Philadelphia: SIAM

[18]

Małolepszy T. Nonlinear Volterra integral equations and the Schröder functional equation. Nonlinear Anal, 2011, 74: 424-432

[19]

Metz J A J, Diekmann O. The Dynamics of Physiologically Structured Populations, 1986, Berlin-Heidelberg: Springer-Verlag

[20]

Miller R K. Nonlinear Volterra Integral Equations, 1971, Menlo Park: W A Benjamin

[21]

Mydlarczyk W. The blow-up solutions of integral equations. Colloq Math, 1999, 79: 147-156

[22]

Olmstead WE. Ignition of a combustible half space. SIAMJ Appl Math, 1983, 43: 1-15

[23]

Smith H L. On periodic solutions of a delay integral equation modelling epidemics. J Math Biol, 1977, 4: 69-80

[24]

Waltham P. Deterministic Threshold Models in the Theory of Epidemics, 1974, Berlin-Heidelberg: Springer-Verlag

AI Summary AI Mindmap
PDF (160KB)

1314

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/