RESEARCH ARTICLE

Factorization of simple modules for certain restricted two-parameter quantum groups

  • Min LI ,
  • Xiuling WANG
Expand
  • School of Mathematical Sciences, Nankai University, Tianjin 300071, China

Received date: 13 Sep 2011

Accepted date: 06 Jul 2012

Published date: 01 Feb 2013

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

We study the representations of the restricted two-parameter quantum groups of types B and G. For these restricted two-parameter quantum groups, we give some explicit conditions which guarantee that a simple module can be factored as the tensor product of a one-dimensional module with a module that is naturally a module for the quotient by central group-like elements. That is, given θ a primitive lth root of unity, the factorization of simple θy,θz,( )-modules is possible, if and only if (2(y - z), l) = 1 for =2n+1; (3(y - z), l) = 1 for g= G2.

Cite this article

Min LI , Xiuling WANG . Factorization of simple modules for certain restricted two-parameter quantum groups[J]. Frontiers of Mathematics in China, 2013 , 8(1) : 169 -190 . DOI: 10.1007/s11464-012-0236-z

1
Bai X, Hu N. Two-parameter quantum group of exceptional type E-series and convex PBW type basis. Algebra Colloq, 2008, 15(4): 619-636

2
Benkart G, Pereira M, Witherspoon S. Yetter-Drinfel’d modules under cocycle twists. J Algebra, 2010, 324(11): 2990-3006

DOI

3
Benkart G, Witherspoon S. Two-parameter quantum groups and Drinfel’d doubles. Algebr Represent Theory, 2004, 7: 261-286

DOI

4
Benkart G, Witherspoon S. Representations of two-parameter quantum groups (of type A) and Schur-Weyl duality. In: Bergen J, Catoiu S, Chin W, eds. Hopf Algebras. Lecture Notes in Pure and Appl Math, 237. New York: Marcel Dekker, 2004, 65-92

5
Benkart G, Witherspoon S. Restricted two-parameter quantum groups (of type A). Representations of Finite Dimensional Algebras and Related Topics in Lie Theory and Geometry. Fields Institute Communications, Vol 40. Providence: Amer Math Soc, 2004, 293-318

6
Bergeron N, Gao Y, Hu N. Drinfel’d doubles and Lusztig’s symmetries of two-parameter quantum groups. J Algebra, 2006, 301: 378-405

DOI

7
Bergeron N, Gao Y, Hu N. Representations of two-parameter quantum orthogonal groups and symplectic groups. In: Studies in Advanced Mathematics, Vol 39. Providence: AMS/IP, 2007, 1-21

8
Chin W, Musson I M. Multiparameter quantum enveloping algebras. J Pure Appl Algebra, 1996, 107: 171-191

DOI

9
Hu N, Pei Y. Notes on two-parameter quantum groups (I). Sci China, Ser A, 2008, 50(2): 1-11

10
Hu N, Pei Y. Notes on two-parameter quantum groups (II). arXiv math. QA/09081635

11
Hu N, Rosso M, Zhang H. Two-parameter affine quantum group Ur,s(sln), Drinfel’d realization and quantum affine Lyndon basis. Comm Math Phys, 2008, 278(2): 453-486

DOI

12
Hu N, Shi Q. The two-parameter quantum group of exceptional type G2 and Lusztig symmetries. Pacific J Math, 2007, 230(2): 327-346

DOI

13
Hu N, Wang X. Convex PBW-type Lyndon basis and restricted two-parameter quantum groups of type G2. Pacific J Math, 2009, 241(2): 243-273

DOI

14
Hu N, Wang X. Convex PBW-type Lyndon bases and restricted two-parameter quantum groups of type B. J Geom Phys, 2010, 60: 430-453

DOI

15
Majid S. Doubles of quasitriangular Hopf algebras. Comm Algebra, 1991, 19(11): 3061-3073

DOI

16
Montgomery S. Hopf Algebras and Their Actions on Rings. CBMS Regional Conference Series in Mathematics, 82. Providence: Amer Math Soc, 1993

17
Pereira M. Factorization of simple modules for certain pointed Hopf algebras. J Algebra, 2007, 318: 957-980

DOI

18
Radford D. On oriented quantum algebras derived from representations of the quantum double of a finite-dimensional Hopf algebra. J Algebra, 2003, 270(2): 670-695

DOI

19
Schneider H-J. Normal basis and transitivity of crossed products for Hopf algebras. J Algebra, 1992, 152(2): 289-312

DOI

20
Sweedler M E. Hopf Algebras. Mathematics Lecture Note Series. New York: W A Benjamin, 1969

Options
Outlines

/