Factorization of simple modules for certain restricted two-parameter quantum groups

Min Li , Xiuling Wang

Front. Math. China ›› 2012, Vol. 8 ›› Issue (1) : 169 -190.

PDF (185KB)
Front. Math. China ›› 2012, Vol. 8 ›› Issue (1) : 169 -190. DOI: 10.1007/s11464-012-0236-z
Research Article
RESEARCH ARTICLE

Factorization of simple modules for certain restricted two-parameter quantum groups

Author information +
History +
PDF (185KB)

Abstract

We study the representations of the restricted two-parameter quantum groups of types B and G. For these restricted two-parameter quantum groups, we give some explicit conditions which guarantee that a simple module can be factored as the tensor product of a one-dimensional module with a module that is naturally a module for the quotient by central group-like elements. That is, given θ a primitive th root of unity, the factorization of simple $\mathfrak{u}_{\theta ^y ,\theta ^z } (\mathfrak{g})$-modules is possible, if and only if (2(yz), ) = 1 for $\mathfrak{g} = \mathfrak{s}\mathfrak{o}_{2n + 1} $; (3(yz), ) = 1 for $\mathfrak{g}$ = G2.

Keywords

Hopf algebra / Drinfel’d double / restricted two-parameter quantum group

Cite this article

Download citation ▾
Min Li, Xiuling Wang. Factorization of simple modules for certain restricted two-parameter quantum groups. Front. Math. China, 2012, 8(1): 169-190 DOI:10.1007/s11464-012-0236-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bai X., Hu N.. Two-parameter quantum group of exceptional type E-series and convex PBW type basis. Algebra Colloq, 2008, 15(4): 619-636

[2]

Benkart G., Pereira M., Witherspoon S.. Yetter-Drinfel’d modules under cocycle twists. J Algebra, 2010, 324(11): 2990-3006

[3]

Benkart G., Witherspoon S.. Two-parameter quantum groups and Drinfel’d doubles. Algebr Represent Theory, 2004, 7: 261-286

[4]

Benkart G., Witherspoon S.. Bergen J., Catoiu S., Chin W.. Representations of two-parameter quantum groups (of type A) and Schur-Weyl duality, 2004, New York: Marcel Dekker 65 92

[5]

Benkart G., Witherspoon S.. Restricted two-parameter quantum groups (of type A). Representations of Finite Dimensional Algebras and Related Topics in Lie Theory and Geometry. Fields Institute Communications, Vol 40, 2004, Providence: Amer Math Soc 293 318

[6]

Bergeron N., Gao Y., Hu N.. Drinfel’d doubles and Lusztig’s symmetries of two-parameter quantum groups. J Algebra, 2006, 301: 378-405

[7]

Bergeron N., Gao Y., Hu N.. Representations of two-parameter quantum orthogonal groups and symplectic groups. Studies in Advanced Mathematics, Vol 39, 2007, Providence: AMS/IP 1 21

[8]

Chin W., Musson I. M.. Multiparameter quantum enveloping algebras. J Pure Appl Algebra, 1996, 107: 171-191

[9]

Hu N., Pei Y.. Notes on two-parameter quantum groups (I). Sci China, Ser A, 2008, 50(2): 1-11

[10]

Hu N, Pei Y. Notes on two-parameter quantum groups (II). arXiv math. QA/09081635

[11]

Hu N., Rosso M., Zhang H.. Two-parameter affine quantum group $U_{r,s} (\widehat{\mathfrak{s}\mathfrak{l}_n })$, Drinfel’d realization and quantum affine Lyndon basis. Comm Math Phys, 2008, 278(2): 453-486

[12]

Hu N., Shi Q.. The two-parameter quantum group of exceptional type G2 and Lusztig symmetries. Pacific J Math, 2007, 230(2): 327-346

[13]

Hu N., Wang X.. Convex PBW-type Lyndon basis and restricted two-parameter quantum groups of type G2. Pacific J Math, 2009, 241(2): 243-273

[14]

Hu N., Wang X.. Convex PBW-type Lyndon bases and restricted two-parameter quantum groups of type B. J Geom Phys, 2010, 60: 430-453

[15]

Majid S.. Doubles of quasitriangular Hopf algebras. Comm Algebra, 1991, 19(11): 3061-3073

[16]

Montgomery S.. Hopf Algebras and Their Actions on Rings. CBMS Regional Conference Series in Mathematics, 82, 1993, Providence: Amer Math Soc

[17]

Pereira M.. Factorization of simple modules for certain pointed Hopf algebras. J Algebra, 2007, 318: 957-980

[18]

Radford D.. On oriented quantum algebras derived from representations of the quantum double of a finite-dimensional Hopf algebra. J Algebra, 2003, 270(2): 670-695

[19]

Schneider H. -J.. Normal basis and transitivity of crossed products for Hopf algebras. J Algebra, 1992, 152(2): 289-312

[20]

Sweedler M. E.. Hopf Algebras. Mathematics Lecture Note Series, 1969, New York: W A Benjamin

AI Summary AI Mindmap
PDF (185KB)

786

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/