Factorization of simple modules for certain restricted two-parameter quantum groups

Min LI, Xiuling WANG

PDF(185 KB)
PDF(185 KB)
Front. Math. China ›› 2013, Vol. 8 ›› Issue (1) : 169-190. DOI: 10.1007/s11464-012-0236-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Factorization of simple modules for certain restricted two-parameter quantum groups

Author information +
History +

Abstract

We study the representations of the restricted two-parameter quantum groups of types B and G. For these restricted two-parameter quantum groups, we give some explicit conditions which guarantee that a simple module can be factored as the tensor product of a one-dimensional module with a module that is naturally a module for the quotient by central group-like elements. That is, given θ a primitive lth root of unity, the factorization of simple θy,θz,( )-modules is possible, if and only if (2(y - z), l) = 1 for =2n+1; (3(y - z), l) = 1 for g= G2.

Keywords

Hopf algebra / Drinfel’d double / restricted two-parameter quantum group

Cite this article

Download citation ▾
Min LI, Xiuling WANG. Factorization of simple modules for certain restricted two-parameter quantum groups. Front Math Chin, 2013, 8(1): 169‒190 https://doi.org/10.1007/s11464-012-0236-z

References

[1]
Bai X, Hu N. Two-parameter quantum group of exceptional type E-series and convex PBW type basis. Algebra Colloq, 2008, 15(4): 619-636
[2]
Benkart G, Pereira M, Witherspoon S. Yetter-Drinfel’d modules under cocycle twists. J Algebra, 2010, 324(11): 2990-3006
CrossRef Google scholar
[3]
Benkart G, Witherspoon S. Two-parameter quantum groups and Drinfel’d doubles. Algebr Represent Theory, 2004, 7: 261-286
CrossRef Google scholar
[4]
Benkart G, Witherspoon S. Representations of two-parameter quantum groups (of type A) and Schur-Weyl duality. In: Bergen J, Catoiu S, Chin W, eds. Hopf Algebras. Lecture Notes in Pure and Appl Math, 237. New York: Marcel Dekker, 2004, 65-92
[5]
Benkart G, Witherspoon S. Restricted two-parameter quantum groups (of type A). Representations of Finite Dimensional Algebras and Related Topics in Lie Theory and Geometry. Fields Institute Communications, Vol 40. Providence: Amer Math Soc, 2004, 293-318
[6]
Bergeron N, Gao Y, Hu N. Drinfel’d doubles and Lusztig’s symmetries of two-parameter quantum groups. J Algebra, 2006, 301: 378-405
CrossRef Google scholar
[7]
Bergeron N, Gao Y, Hu N. Representations of two-parameter quantum orthogonal groups and symplectic groups. In: Studies in Advanced Mathematics, Vol 39. Providence: AMS/IP, 2007, 1-21
[8]
Chin W, Musson I M. Multiparameter quantum enveloping algebras. J Pure Appl Algebra, 1996, 107: 171-191
CrossRef Google scholar
[9]
Hu N, Pei Y. Notes on two-parameter quantum groups (I). Sci China, Ser A, 2008, 50(2): 1-11
[10]
Hu N, Pei Y. Notes on two-parameter quantum groups (II). arXiv math. QA/09081635
[11]
Hu N, Rosso M, Zhang H. Two-parameter affine quantum group Ur,s(sln), Drinfel’d realization and quantum affine Lyndon basis. Comm Math Phys, 2008, 278(2): 453-486
CrossRef Google scholar
[12]
Hu N, Shi Q. The two-parameter quantum group of exceptional type G2 and Lusztig symmetries. Pacific J Math, 2007, 230(2): 327-346
CrossRef Google scholar
[13]
Hu N, Wang X. Convex PBW-type Lyndon basis and restricted two-parameter quantum groups of type G2. Pacific J Math, 2009, 241(2): 243-273
CrossRef Google scholar
[14]
Hu N, Wang X. Convex PBW-type Lyndon bases and restricted two-parameter quantum groups of type B. J Geom Phys, 2010, 60: 430-453
CrossRef Google scholar
[15]
Majid S. Doubles of quasitriangular Hopf algebras. Comm Algebra, 1991, 19(11): 3061-3073
CrossRef Google scholar
[16]
Montgomery S. Hopf Algebras and Their Actions on Rings. CBMS Regional Conference Series in Mathematics, 82. Providence: Amer Math Soc, 1993
[17]
Pereira M. Factorization of simple modules for certain pointed Hopf algebras. J Algebra, 2007, 318: 957-980
CrossRef Google scholar
[18]
Radford D. On oriented quantum algebras derived from representations of the quantum double of a finite-dimensional Hopf algebra. J Algebra, 2003, 270(2): 670-695
CrossRef Google scholar
[19]
Schneider H-J. Normal basis and transitivity of crossed products for Hopf algebras. J Algebra, 1992, 152(2): 289-312
CrossRef Google scholar
[20]
Sweedler M E. Hopf Algebras. Mathematics Lecture Note Series. New York: W A Benjamin, 1969

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(185 KB)

Accesses

Citations

Detail

Sections
Recommended

/