Factorization of simple modules for certain restricted two-parameter quantum groups
Min LI, Xiuling WANG
Factorization of simple modules for certain restricted two-parameter quantum groups
We study the representations of the restricted two-parameter quantum groups of types B and G. For these restricted two-parameter quantum groups, we give some explicit conditions which guarantee that a simple module can be factored as the tensor product of a one-dimensional module with a module that is naturally a module for the quotient by central group-like elements. That is, given θ a primitive lth root of unity, the factorization of simple is possible, if and only if (2(y - z), l) = 1 for ; (3(y - z), l) = 1 for g= G2.
Hopf algebra / Drinfel’d double / restricted two-parameter quantum group
[1] |
Bai X, Hu N. Two-parameter quantum group of exceptional type E-series and convex PBW type basis. Algebra Colloq, 2008, 15(4): 619-636
|
[2] |
Benkart G, Pereira M, Witherspoon S. Yetter-Drinfel’d modules under cocycle twists. J Algebra, 2010, 324(11): 2990-3006
CrossRef
Google scholar
|
[3] |
Benkart G, Witherspoon S. Two-parameter quantum groups and Drinfel’d doubles. Algebr Represent Theory, 2004, 7: 261-286
CrossRef
Google scholar
|
[4] |
Benkart G, Witherspoon S. Representations of two-parameter quantum groups (of type A) and Schur-Weyl duality. In: Bergen J, Catoiu S, Chin W, eds. Hopf Algebras. Lecture Notes in Pure and Appl Math, 237. New York: Marcel Dekker, 2004, 65-92
|
[5] |
Benkart G, Witherspoon S. Restricted two-parameter quantum groups (of type A). Representations of Finite Dimensional Algebras and Related Topics in Lie Theory and Geometry. Fields Institute Communications, Vol 40. Providence: Amer Math Soc, 2004, 293-318
|
[6] |
Bergeron N, Gao Y, Hu N. Drinfel’d doubles and Lusztig’s symmetries of two-parameter quantum groups. J Algebra, 2006, 301: 378-405
CrossRef
Google scholar
|
[7] |
Bergeron N, Gao Y, Hu N. Representations of two-parameter quantum orthogonal groups and symplectic groups. In: Studies in Advanced Mathematics, Vol 39. Providence: AMS/IP, 2007, 1-21
|
[8] |
Chin W, Musson I M. Multiparameter quantum enveloping algebras. J Pure Appl Algebra, 1996, 107: 171-191
CrossRef
Google scholar
|
[9] |
Hu N, Pei Y. Notes on two-parameter quantum groups (I). Sci China, Ser A, 2008, 50(2): 1-11
|
[10] |
Hu N, Pei Y. Notes on two-parameter quantum groups (II). arXiv math. QA/09081635
|
[11] |
Hu N, Rosso M, Zhang H. Two-parameter affine quantum group Ur,s(sln), Drinfel’d realization and quantum affine Lyndon basis. Comm Math Phys, 2008, 278(2): 453-486
CrossRef
Google scholar
|
[12] |
Hu N, Shi Q. The two-parameter quantum group of exceptional type G2 and Lusztig symmetries. Pacific J Math, 2007, 230(2): 327-346
CrossRef
Google scholar
|
[13] |
Hu N, Wang X. Convex PBW-type Lyndon basis and restricted two-parameter quantum groups of type G2. Pacific J Math, 2009, 241(2): 243-273
CrossRef
Google scholar
|
[14] |
Hu N, Wang X. Convex PBW-type Lyndon bases and restricted two-parameter quantum groups of type B. J Geom Phys, 2010, 60: 430-453
CrossRef
Google scholar
|
[15] |
Majid S. Doubles of quasitriangular Hopf algebras. Comm Algebra, 1991, 19(11): 3061-3073
CrossRef
Google scholar
|
[16] |
Montgomery S. Hopf Algebras and Their Actions on Rings. CBMS Regional Conference Series in Mathematics, 82. Providence: Amer Math Soc, 1993
|
[17] |
Pereira M. Factorization of simple modules for certain pointed Hopf algebras. J Algebra, 2007, 318: 957-980
CrossRef
Google scholar
|
[18] |
Radford D. On oriented quantum algebras derived from representations of the quantum double of a finite-dimensional Hopf algebra. J Algebra, 2003, 270(2): 670-695
CrossRef
Google scholar
|
[19] |
Schneider H-J. Normal basis and transitivity of crossed products for Hopf algebras. J Algebra, 1992, 152(2): 289-312
CrossRef
Google scholar
|
[20] |
Sweedler M E. Hopf Algebras. Mathematics Lecture Note Series. New York: W A Benjamin, 1969
|
/
〈 | 〉 |