RESEARCH ARTICLE

Geometric simplicity of spectral radius of nonnegative irreducible tensors

  • Yuning YANG ,
  • Qingzhi YANG
Expand
  • School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China

Received date: 05 Apr 2012

Accepted date: 27 Aug 2012

Published date: 01 Feb 2013

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

We study the real and complex geometric simplicity of nonnegative irreducible tensors. First, we prove some basic conclusions. Based on the conclusions, the real geometric simplicity of the spectral radius of an evenorder nonnegative irreducible tensor is proved. For an odd-order nonnegative irreducible tensor, sufficient conditions are investigated to ensure the spectral radius to be real geometrically simple. Furthermore, the complex geometric simplicity of nonnegative irreducible tensors is also studied.

Cite this article

Yuning YANG , Qingzhi YANG . Geometric simplicity of spectral radius of nonnegative irreducible tensors[J]. Frontiers of Mathematics in China, 2013 , 8(1) : 129 -140 . DOI: 10.1007/s11464-012-0272-8

1
Bulò S R, Pelillo M. A generalization of the Motzkin-Straus theorem to hyper-graphs. Optim Lett, 2009, 3: 287-295

2
Bulò S R, Pelillo M. New bounds on the clique number of graphs based on spectral hypergraph theory. In: Learning and Intelligent Optimization. Lecture Notes in Computer Science, Vol 5851. Berlin: Springer-Verlag, 2009, 45-58

DOI

3
Chang K-C. A nonlinear Krein Rutman theorem. J Syst Sci Complex, 2009, 22: 542-554

DOI

4
Chang K-C, Pearson K, Zhang T. Perron Frobenius Theorem for nonnegative tensors. Commun Math Sci, 2008, 6: 507-520

5
Chang K-C, Pearson K, Zhang T. On eigenvalue problems of real symmetric tensors. J Math Anal Appl, 2009, 350: 416-422

DOI

6
Chang K-C, Pearson K, Zhang T. Primitivity, the convergence of the NQZ method, and the largest eigenvalue for nonnegative tensors. SIAM J Matrix Anal Appl, 2011, 32: 806-819

DOI

7
Hu S, Huang Z-H, Qi L. Finding the spectral radius of a nonnegative tensor. 2011, http://arxiv.org/abs/1111.2138v1

8
Lim L-H. Singular values and eigenvalues of tensors: a variational approach. In: Proceedings of the IEEE InternationalWorkshop on Computational Advances in Multi- Sensor Adaptive Processing, 1. 2005, 129-132

9
Ng M, Qi L, Zhou G. Finding the largest eigenvalue of a nonnegative tensor. SIAM J Matrix Anal Appl, 2009, 31: 1090-1099

DOI

10
Pearson K J. Essentially positive tensors. Int J Algebra, 2010, 4: 421-427

11
Qi L. Eigenvalues of a real supersymmetric tensor. J Symbolic Comput, 2005, 40: 1302-1324

DOI

12
Qi L, Sun W, Wang Y. Numerical multilinear algebra and its applications. Front Math China, 2007, 2: 501-526

DOI

13
Wolfram Research, Inc. Mathematica, Version 7.0. 2008

14
Yang Q, Yang Y. Further results for Perron-Frobenius Theorem for nonnegative tensors II. SIAM J Matrix Anal Appl, 2011, 32: 1236-1250

DOI

15
Yang Y, Yang Q. Further results for Perron-Frobenius Theorem for nonnegative tensors. SIAM J Matrix Anal Appl, 2010, 31: 2517-2530

DOI

Options
Outlines

/