Geometric simplicity of spectral radius of nonnegative irreducible tensors

Yuning Yang, Qingzhi Yang

Front. Math. China ›› 2012, Vol. 8 ›› Issue (1) : 129-140.

PDF(117 KB)
Front. Math. China All Journals
PDF(117 KB)
Front. Math. China ›› 2012, Vol. 8 ›› Issue (1) : 129-140. DOI: 10.1007/s11464-012-0272-8
Research Article
RESEARCH ARTICLE

Geometric simplicity of spectral radius of nonnegative irreducible tensors

Author information +
History +

Abstract

We study the real and complex geometric simplicity of nonnegative irreducible tensors. First, we prove some basic conclusions. Based on the conclusions, the real geometric simplicity of the spectral radius of an evenorder nonnegative irreducible tensor is proved. For an odd-order nonnegative irreducible tensor, sufficient conditions are investigated to ensure the spectral radius to be real geometrically simple. Furthermore, the complex geometric simplicity of nonnegative irreducible tensors is also studied.

Keywords

Nonnegative irreducible tensor / Perron-Frobenius theorem, geometrically simple

Cite this article

Download citation ▾
Yuning Yang, Qingzhi Yang. Geometric simplicity of spectral radius of nonnegative irreducible tensors. Front. Math. China, 2012, 8(1): 129‒140 https://doi.org/10.1007/s11464-012-0272-8
This is a preview of subscription content, contact us for subscripton.

References

[1.]
Bulò S. R., Pelillo M.. A generalization of the Motzkin-Straus theorem to hyper-graphs. Optim Lett, 2009, 3: 287-295
CrossRef Google scholar
[2.]
Bulò S. R., Pelillo M.. New bounds on the clique number of graphs based on spectral hypergraph theory. Learning and Intelligent Optimization, 2009, Berlin: Springer-Verlag 45 58
CrossRef Google scholar
[3.]
Chang K.-C.. A nonlinear Krein Rutman theorem. J Syst Sci Complex, 2009, 22: 542-554
CrossRef Google scholar
[4.]
Chang K.-C., Pearson K., Zhang T.. Perron Frobenius Theorem for nonnegative tensors. Commun Math Sci, 2008, 6: 507-520
[5.]
Chang K.-C., Pearson K., Zhang T.. On eigenvalue problems of real symmetric tensors. J Math Anal Appl, 2009, 350: 416-422
CrossRef Google scholar
[6.]
Chang K.-C., Pearson K., Zhang T.. Primitivity, the convergence of the NQZ method, and the largest eigenvalue for nonnegative tensors. SIAM J Matrix Anal Appl, 2011, 32: 806-819
CrossRef Google scholar
[7.]
Hu S, Huang Z-H, Qi L. Finding the spectral radius of a nonnegative tensor. 2011, http://arxiv.org/abs/1111.2138v1
[8.]
Lim L.-H.. Singular values and eigenvalues of tensors: a variational approach. Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005, 1: 129-132
[9.]
Ng M., Qi L., Zhou G.. Finding the largest eigenvalue of a nonnegative tensor. SIAM J Matrix Anal Appl, 2009, 31: 1090-1099
CrossRef Google scholar
[10.]
Pearson K. J.. Essentially positive tensors. Int J Algebra, 2010, 4: 421-427
[11.]
Qi L.. Eigenvalues of a real supersymmetric tensor. J Symbolic Comput, 2005, 40: 1302-1324
CrossRef Google scholar
[12.]
Qi L., Sun W., Wang Y.. Numerical multilinear algebra and its applications. Front Math China, 2007, 2: 501-526
CrossRef Google scholar
[13.]
Wolfram Research, Inc. Mathematica, Version 7.0. 2008
[14.]
Yang Q., Yang Y.. Further results for Perron-Frobenius Theorem for nonnegative tensors II. SIAM J Matrix Anal Appl, 2011, 32: 1236-1250
CrossRef Google scholar
[15.]
Yang Y., Yang Q.. Further results for Perron-Frobenius Theorem for nonnegative tensors. SIAM J Matrix Anal Appl, 2010, 31: 2517-2530
CrossRef Google scholar
AI Summary AI Mindmap
PDF(117 KB)

927

Accesses

5

Citations

Detail

Sections
Recommended

/