Geometric simplicity of spectral radius of nonnegative irreducible tensors

Yuning Yang , Qingzhi Yang

Front. Math. China ›› 2012, Vol. 8 ›› Issue (1) : 129 -140.

PDF (117KB)
Front. Math. China ›› 2012, Vol. 8 ›› Issue (1) : 129 -140. DOI: 10.1007/s11464-012-0272-8
Research Article
RESEARCH ARTICLE

Geometric simplicity of spectral radius of nonnegative irreducible tensors

Author information +
History +
PDF (117KB)

Abstract

We study the real and complex geometric simplicity of nonnegative irreducible tensors. First, we prove some basic conclusions. Based on the conclusions, the real geometric simplicity of the spectral radius of an evenorder nonnegative irreducible tensor is proved. For an odd-order nonnegative irreducible tensor, sufficient conditions are investigated to ensure the spectral radius to be real geometrically simple. Furthermore, the complex geometric simplicity of nonnegative irreducible tensors is also studied.

Keywords

Nonnegative irreducible tensor / Perron-Frobenius theorem, geometrically simple

Cite this article

Download citation ▾
Yuning Yang, Qingzhi Yang. Geometric simplicity of spectral radius of nonnegative irreducible tensors. Front. Math. China, 2012, 8(1): 129-140 DOI:10.1007/s11464-012-0272-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bulò S. R., Pelillo M.. A generalization of the Motzkin-Straus theorem to hyper-graphs. Optim Lett, 2009, 3: 287-295

[2]

Bulò S. R., Pelillo M.. New bounds on the clique number of graphs based on spectral hypergraph theory. Learning and Intelligent Optimization, 2009, Berlin: Springer-Verlag 45 58

[3]

Chang K.-C.. A nonlinear Krein Rutman theorem. J Syst Sci Complex, 2009, 22: 542-554

[4]

Chang K.-C., Pearson K., Zhang T.. Perron Frobenius Theorem for nonnegative tensors. Commun Math Sci, 2008, 6: 507-520

[5]

Chang K.-C., Pearson K., Zhang T.. On eigenvalue problems of real symmetric tensors. J Math Anal Appl, 2009, 350: 416-422

[6]

Chang K.-C., Pearson K., Zhang T.. Primitivity, the convergence of the NQZ method, and the largest eigenvalue for nonnegative tensors. SIAM J Matrix Anal Appl, 2011, 32: 806-819

[7]

Hu S, Huang Z-H, Qi L. Finding the spectral radius of a nonnegative tensor. 2011, http://arxiv.org/abs/1111.2138v1

[8]

Lim L.-H.. Singular values and eigenvalues of tensors: a variational approach. Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005, 1: 129-132

[9]

Ng M., Qi L., Zhou G.. Finding the largest eigenvalue of a nonnegative tensor. SIAM J Matrix Anal Appl, 2009, 31: 1090-1099

[10]

Pearson K. J.. Essentially positive tensors. Int J Algebra, 2010, 4: 421-427

[11]

Qi L.. Eigenvalues of a real supersymmetric tensor. J Symbolic Comput, 2005, 40: 1302-1324

[12]

Qi L., Sun W., Wang Y.. Numerical multilinear algebra and its applications. Front Math China, 2007, 2: 501-526

[13]

Wolfram Research, Inc. Mathematica, Version 7.0. 2008

[14]

Yang Q., Yang Y.. Further results for Perron-Frobenius Theorem for nonnegative tensors II. SIAM J Matrix Anal Appl, 2011, 32: 1236-1250

[15]

Yang Y., Yang Q.. Further results for Perron-Frobenius Theorem for nonnegative tensors. SIAM J Matrix Anal Appl, 2010, 31: 2517-2530

AI Summary AI Mindmap
PDF (117KB)

1038

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/