RESEARCH ARTICLE

H-Eigenvalues of signless Laplacian tensor for an even uniform hypergraph

  • Jinshan XIE 1,2 ,
  • An CHANG , 1
Expand
  • 1. Center for Discrete Mathematics, Fuzhou University, Fuzhou 350003, China
  • 2. School of Mathematics and Computer Science, Longyan University, Longyan 364012, China

Received date: 26 Apr 2012

Accepted date: 17 Oct 2012

Published date: 01 Feb 2013

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

The signless Laplacian tensor and its H-eigenvalues for an even uniform hypergraph are introduced in this paper. Some fundamental properties of them for an even uniform hypergraph are obtained. In particular, the smallest and the largest H-eigenvalues of the signless Laplacian tensor for an even uniform hypergraph are discussed, and their relationships to hypergraph bipartition, minimum degree, and maximum degree are described. As an application, the bounds of the edge cut and the edge connectivity of the hypergraph involving the smallest and the largest H-eigenvalues are presented.

Cite this article

Jinshan XIE , An CHANG . H-Eigenvalues of signless Laplacian tensor for an even uniform hypergraph[J]. Frontiers of Mathematics in China, 0 , 8(1) : 107 -127 . DOI: 10.1007/s11464-012-0266-6

1
Brouwer A E, Haemers W H. Spectra of Graphs. Berlin: Springer, 2011

2
Cartwright D, Sturmfels B. The number of eigenvalues of a tensor. Linear Algebra Appl, 2013, 438(2): 942-952

DOI

3
Chang K C, Pearson K, Zhang T. Perron Frobenius Theorem for nonnegative tensors. Commun Math Sci, 2008, 6: 507-520

4
Chang K C, Pearson K, Zhang T. Primitivity, the convergence of the NQZ method, and the largest eigenvalue for nonnegative tensors. School of Mathematical Sciences, Peking University, Beijing, China, Preprint, 2010

5
Chang K C, Pearson K, Zhang T. Some variational principles of the Z-eigenvalues for nonnegative tensors. School of Mathematical Sciences, Peking University, Beijing, China, Preprint, 2011. http://www.mathinst.pku.edu.cn/data/upload/month 201112/ 2011-no44 dp47rB.pdf

6
Chang K C, Qi L, Zhou G. Singular values of a real rectangular tensor. J Math Anal Appl, 2010, 370: 284-294

DOI

7
Chung F R K. Spectral Graph Theory. Providence: Amer Math Soc, 1997

8
Cooper J, Dutle A. Spectra of uniform hypergraphs. Linear Algebra Appl, 2012, 436(9): 3268-3292

DOI

9
Cvetković D, Rowlinson P, Simić S K. Eigenvalue bounds for the signless Laplacian. Publ Inst Math (Beograd), 2007, 95(81): 11-27

DOI

10
Fiedler M. Algebraic connectivity of graphs. Czech Math J, 1973, 98(23): 298-305

11
Hu S, Qi L. Algebraic connectivity of an even uniform hypergraph. J Comb Optim, 2012, 24(4): 564-579

DOI

12
Kolda T G, Bader B W. Tensor decompositions and applications. SIAM Review, 2009, 51: 455-500

DOI

13
Lim L-H. Singular values and eigenvalues of tensors: a variational approach. In: Proceedings of the IEEE InternationalWorkshop on Computational Advances in Multi- Sensor Adaptive Processing (CAMSAP ’05), Vol 1. 2005, 129-132

14
Ni G, Qi L, Wang F, Wang Y. The degree of the E-characteristic polynomial of an even order tensor. J Math Anal Appl, 2007, 329: 1218-1229

DOI

15
Qi L. Eigenvalues of a real supersymmetric tensor. J Symbolic Comput, 2005, 40: 1302-1324

DOI

16
Qi L. Eigenvalues and invariants of tensors. J Math Anal Appl, 2007, 325: 1363-1377

DOI

17
Qi L. The spectral theory of tensors. arXiv: 1201.3424v1 [math.SP]

18
Qi L, Sun W, Wang Y. Numerical multilinear algebra and its applications. Front Math China, 2007, 2(4): 501-526

DOI

19
Rota Bulò S, Pelillo M. A generalization of the Motzkin-Straus theorem to hypergraphs. Optim Lett, 2009, 3: 287-295

DOI

20
Rota Bulò S, Pelillo M. New bounds on the clique number of graphs based on spectral hypergraph theory. In: Stützle T, ed. Learning and Intelligent Optimization. Berlin: Springer-Verlag, 2009, 45-48

DOI

21
Van Loan C. Future directions in tensor-based computation and modeling. Workshop Report in Arlington, Virginia at National Science Foundation, <month>February</month><day>20-21</day>, 2009. http://www.cs.cornell.edu/cv/TenWork/Home.htm

22
Yang Q, Yang Y. Further results for Perron-Frobenius Theorem for nonnegative tensors II. SIAM J Matrix Anal Appl, 2011, 32: 1236-1250

DOI

23
Yang Y, Yang Q. Further results for Perron-Frobenius theorem for nonnegative tensors. SIAM J Matrix Anal Appl, 2010, 31: 2517-2530

DOI

24
Yang Y, Yang Q. Singular values of nonnegative rectangular tensors. Front Math China, 2011, 6(2): 363-378

DOI

Options
Outlines

/