A KAM theorem for 2-dimensional nonlinear Schrödinger equations with forcing terms and (2p+1)-nonlinearities

  • Shuaishuai XUE
Expand
  • School of Mathematics, Nanjing Audit University, Nanjing 211815, China

Copyright

2024 Higher Education Press 2024

Abstract

In this paper, we prove an infinite dimensional KAM theorem and apply it to study 2-dimensional nonlinear Schrödinger equations with different large forcing terms and (2p + 1)-nonlinearities

      iutΔu+φ1(ω¯1t)u+φ2(ω¯2t)|u|2pu=0,tR,xT2

under periodic boundary conditions. As a result, the existence of a Whitney smooth family of small-amplitude reducible quasi-periodic solutions is obtained.

Cite this article

Shuaishuai XUE . A KAM theorem for 2-dimensional nonlinear Schrödinger equations with forcing terms and (2p+1)-nonlinearities[J]. Frontiers of Mathematics in China, 2024 , 19(2) : 75 -100 . DOI: 10.3868/s140-DDD-024-0007-x

1
Bambusi D. On long time stability in Hamiltonian perturbations of non-resonant linear PDEs. Nonlinearity 1999; 12(4): 823–850

2
Bourgain J. Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE. Internat Math Res Notices 1994; 1994(11): 475–497

3
Bourgain J. Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations. Ann of Math (2) 1998; 148(2): 363–439

4
Bourgain J. Construction of periodic solutions of nonlinear wave equations in higher dimension. Geom Funct Anal 1995; 5(4): 629–639

5
BourgainJ. Global Solutions of Nonlinear Schrödinger Equations. American Mathematical Society Colloquium Publications, Vol 46. Providence, RI: AMS, 1999

6
Bourgain J. On diffusion in high-dimensional Hamiltonian systems and PDE. J Anal Math 2000; 80: 1–35

7
BourgainJ. Green’s Function Estimates for Lattice Schrödinger Operators and Applications. Annals of Mathematics Studies, Vol 158. Princeton, NJ: Princeton University Press, 2005

8
Bourgain J, Wang W M. Quasi-periodic solutions of nonlinear random Schrödinger equations. J Eur Math Soc (JEMS) 2008; 10(1): 1–45

9
Chierchia L, You J G. KAM tori for 1D nonlinear wave equations with periodic boundary conditions. Comm Math Phys 2000; 211(2): 497–525

10
Craig W, Wayne C E. Newton’s method and periodic solutions of nonlinear wave equations. Comm Pure Appl Math. 1993; 46(11): 1409–1498

11
Eliasson L H. Perturbations of stable invariant tori for Hamiltonian systems. Ann Scuola Norm Sup Pisa Cl Sci (4) 1988; 15(1): 115–147

12
EliassonL HKuksinS B. KAM for the non-linear Schrödinger equation—a short presentation. In: Holomorphic Dynamics and Renormalization, Fields Inst Commun, Vol 53. Providence, RI: AMS, 2008, 361–376

13
Geng J S, Xu X D, You J G. An infinite dimensional KAM theorem and its application to the two dimensional cubic Schrödinger equation. Adv Math 2011; 226(6): 5361–5402

14
Geng J S, Xue S S. Invariant tori for two dimensional nonlinear Schrödinger equations with large forcing terms. J Math Phys 2019; 60(5): 052703

15
Geng J S, Xue S S. Reducible KAM tori for two-dimensional quintic Schrödinger equations. Sci Sin Math 2021; 51: 457–498

16
KappelerTPöschelJ. KdV & KAM, A Series of Modern Surveys in Mathematics, Vol 45. Berlin: Springer-Verlag, 2003

17
Kuksin S B. Hamiltonian perturbations of infinite-dimensional linear systems with an imaginary spectrum. Funct Anal Appl 1987; 21: 192–205

18
KuksinS B. Nearly Integrable Infinite-dimensional Hamiltonian Systems. Lecture Notes in Mathematics, Vol 1556. Berlin: Springer-Verlag, 1993

19
Kuksin S B, Pöschel J. Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation. Ann of Math (2) 1996; 143(1): 149–179

20
Procesi C, Procesi M. A KAM algorithm for the resonant non-linear Schrödinger equation. Adv Math 2015; 272: 399–470

21
Procesi M, Procesi C. A normal form for the Schrödinger equation with analytic non-linearities. Comm Math Phys 2012; 312(2): 501–557

22
Procesi M, Xu X D. Quasi-Töplitz functions in KAM theorem. SIAM J Math Anal 2013; 45(4): 2148–2181

23
Wang W M. Energy supercritical nonlinear Schrödinger equations: quasiperiodic solutions. Duke Math J 2016; 165(6): 1129–1192

24
Wayne C E. Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory. Comm Math Phys 1990; 127(3): 479–528

25
Xu J X, You J G. Persistence of lower-dimensional tori under the first Melnikov’s non-resonance condition. J Math Pures Appl (9) 2001; 80(10): 1045–1067

26
You J G, Geng J S, Xu JX. KAM theory in finite and infinite dimensional spaces. Sci Sin Math 2017; 47: 77–96

Outlines

/