On blow-up criterion for the nonlinear Schrödinger equation systems

  • Yili GAO
Expand
  • Center for Applied Mathematics, Tianjin University, Tianjin 300072, China

Copyright

2023 Higher Education Press 2023

Abstract

In this paper, we study the blow-up problem of nonlinear Schrödinger equations

         {itv+Δu+(|u|2+|v|2)u=0,(t,x)R1+n,itv+Δv+(|u|2+|v|2)v=0,(t,x)R1+n,u(0,x)=u0(x),v(0,x)=v0(x),

and prove that the solution of negative energy (E(u,v)<0) blows up in finite or infinite time.

Cite this article

Yili GAO . On blow-up criterion for the nonlinear Schrödinger equation systems[J]. Frontiers of Mathematics in China, 2023 , 18(6) : 441 -447 . DOI: 10.3868/s140-DDD-023-0031-x

1
Bergé L. Wave collapse in physics: principles and applications to light and plasma waves. Phys Rep 1998; 303(5/6): 259–370

2
Du D P, Wu Y F, Zhang K J. On blow-up criterion for the nonlinear Schrödinger equation. Discrete Cantin Dyn Syst 2016; 36(7): 3639–3650

3
Glassey R T. On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations. J Math Phys 1977; 18(9): 1794–1797

4
Holmer J, Roudenko S. Divergence of infinite-variance nonradial solutions to the 3d NLS equation. Comm Partial Differential Equations 2010; 35(5): 878–905

5
Kenig C, Merle F. Global well-posedness, scattering and blow-up for the energy critical focusing nonlinear wave equation. Acta Math 2008; 201(2): 147–212

6
SulemCSulemP-L. The Nonlinear Schrödinger Equation: Self-focusing and Wave Collapse. New York: Springer-Verlag, 1999

Outlines

/