Frontiers of Mathematics in China >
The frame sets of the B-splines
Published date: 15 Aug 2023
Copyright
It is not completely clear which elements constitute the frame sets of the B-splines currently, but some considerable results have been obtained. In this paper, firstly, the background of frame set is introduced. Secondly, the main progress of the frame sets of the B-splines in the past more than twenty years are reviewed, and particularly the progress for the frame set of the 2 order B-spline and the frame set of the 3 order B-spline are explained, respectively.
Key words: B-spline; Gabor frame; frame set
Dengfeng LI . The frame sets of the B-splines[J]. Frontiers of Mathematics in China, 2023 , 18(4) : 223 -233 . DOI: 10.3868/s140-DDD-023-0021-x
1 |
Atindehou A G D. On the frame set for the 3-spline. Appl Math 2022; 13: 377–400
|
2 |
Atindehou A G D, Frederick C, Kouagou Y B, Okoudjou K A. On the frame set of the second-order B-spline. Appl Comput Harmon Anal 2023; 62: 237–250
|
3 |
AtindehouA G DKouagouY BOkoudjouK A. Frame sets for generalized B-splines. 2018, arXiv: 1804-02450
|
4 |
Atindehou A G D, Kouagou Y B, Okoudjou K A. Frame sets for a class of compactly supported continuous functions. Asian-Eur J Math 2020; 13(5): 2050093
|
5 |
AtindehouA G DYebeniBKouagouY BOkoudjouK. A. Frame sets for generalized B-splines. 2018, arXiv: 1804.02450v2
|
6 |
Belov Y, Kulikov A, Lyubarskii Y. Gabor frames for rational functions. Invent Math 2023; 23(2): 431–466
|
7 |
BényiÁOkoudjouK A. Modulation Spaces: With Applications to Pseudodifferential Operators and Nonlinear Schrödinger Equations. Applied and Numerical Harmonic Analysis. New York: Birkhaüser/Springer, 2020
|
8 |
ChristensenO. Six (seven) problems in frame theory. In: New Perspectives on Approximation and Sampling Theory. Applied and Numerical Harmonic Analysis. Cham: Birkhaüser/Springer, 2014, 337–358
|
9 |
ChristensenO. An Introduction to Frames and Riesz Bases, 2nd ed. Applied and Numerical Harmonic Analysis. Cham: Birkhaüser/Springer, 2016
|
10 |
Christensen O, Kim H O, Kim R Y. Gabor windows supported on [−1,1] and compactly supported dual windows. Appl Comput Harmon Anal 2010; 28(1): 89–103
|
11 |
Christensen O, Kim H O, Kim R Y. On Gabor frames generated by sign-changing windows and B-splines. Appl Comput Harmon Anal 2015; 39(3): 534–544
|
12 |
Christensen O, Kim H O, Kim R Y. On Gabor frame set for compactly supported continuous functions. J Inequal Appl 2016;
|
13 |
Dai X R, Sun Q Y. The abc-problem for Gabor systems. Mem Amer Math Soc 2016; 244(1152): ix+99 pp
|
14 |
DaiX RZhuM. Frame sets for Gabor systems with Haar window. 2022, arXiv: 2205.06479v1
|
15 |
Daubechies I. The wavelet transform, time-frequency localization and signal analysis. IEEE Trans Inform Theory 1990; 36(5): 961–1005
|
16 |
DaubechiesI. Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series in Applied Mathematics, Vol 61. Philadelphia, PA: SIAM, 1992
|
17 |
Daubechies I, Landau H, Landau Z. Gabor time-frequency lattices and the Wexler-Raz identity. J Fourier Anal Appl 1995; 1(4): 437–478
|
18 |
Feichtinger H G, Gröchenig K. Gabor frames and time-frequency analysis of distributions. J Funct Anal 1997; 146(2): 464–495
|
19 |
Feichtinger H G, Kaiblinger N. Varying the time-frequency lattices of Gabor frames. Trans Amer Math Soc 2004; 356(5): 2001–2023
|
20 |
FeichtibgerH GStrohmerT (eds). Gabor Analysis and Algorithms: Theory and Applications. Applied and Numerical Harmonic Analysis. Boston, MA: Birkhaüser Boston, Inc, 1998
|
21 |
FeichtingerH GStrohmerT (eds). Advances in Gabor Analysis. Applied and Nu- merical Harmonic Analysis. Boston, MA: Birkhaüser Boston, Inc, 2003
|
22 |
GröchenigK. Foundations of Time-Frequency Analysis. Applied and Numerical Har- monic Analysis. Boston, MA: Birkhaüser Boston, Inc, 2001
|
23 |
Gröchenig K. Time-frequency analysis of Sjöstrand’s class. Rev Mat Iberoam 2006; 22(2): 703–724
|
24 |
Gröchenig K. The mystery of Gabor frames. J Fourier Anal Appl 2014; 20(4): 865–895
|
25 |
Gröchenig K, Romero J L, Stöckler J. Sampling theorems for shift-invariant spaces, Gabor frames, and totally positive functions. Invent Math 2018; 211(3): 1119–1148
|
26 |
Gröchenig K, Romero J L, Stöckler J. Sharp results on sampling with derivatives in shift-invariant spaces and multi-window Gabor frames. Constr Approx 2020; 51(1): 1–25
|
27 |
Gröchenig K, Stöckler J. Gabor frames and totally positive functions. Duke Math J 2013; 162(6): 1003–1031
|
28 |
Gu Q, Han D G. When a characteristic function generates a Gabor frame?. Appl Comput Harmon Anal 2008; 24(3): 290–309
|
29 |
Heil C. History and evolution of the density theorem for Gabor frames. J Fourier Anal Appl 2007; 13(2): 113–166
|
30 |
HlawatschFMatzG. Wireless communications over rapidly time-varying channels. Amsterdam: Academic Press, 2011
|
31 |
Janssen A J E M. Some Weyl-Heisenberg frame bound calculations. Indag Math (N S) 1996; 7(2): 165–183
|
32 |
Janssen A J E M. On generating tight Gabor frames at critical density. J Fourier Anal Appl 2003; 9(2): 175–214
|
33 |
JanssenA J E M. Zak transforms with few zeros and the tie. In: Advances in Gabor Analysis. App Numer Harmon Anal. Boston, MA: Birkhaüser Boston, Inc, 2003, 31–70
|
34 |
Janssen A J E M, Strohmer T. Hyperbolic secants yield Gabor frames. Appl Comput Harmon Anal 2002; 12(2): 259–267
|
35 |
Kloos T, Stöckler J. Zak transforms and Gabor frames of totally positive functions and exponential B-splines. J Approx Theory 2014; 184: 209–237
|
36 |
Lemvig J, Nielsen K H. Counterexamples to the B-spline conjecture for Gabor frames. J Fourier Anal Appl 2016; 22(6): 1440–1451
|
37 |
LiD F. Mathematical Theory of Wavelet Analysis. Beijing: Science Press, 2017 (in Chinese)
|
38 |
Luef F. Projective modules over noncommutative tori are multi-window Gabor frames for modulation spaces. J Funct Anal 2009; 257(6): 1921–1946
|
39 |
LyubarskiiY I. Frames in the Bargmann space of entire function functions. In: Entire and Subharmonic Functions. Adv Sovit Math, Vol 11. Providence, RI: AMS, 1992, 167–180
|
40 |
NielsenK H. The frame set of Gabor systems with B-spline generators. Master Thesis. København: Technical University of Denmark, 2015
|
41 |
Okoudjou K A. An invitation to Gabor analysis. Notices Amer Math Soc 2019; 66(6): 808–819
|
42 |
Seip K. Density theorems for sampling and interpolation in the Bargmann-Fock space, I. J Reine Angew Math 1992; 429: 91–106
|
43 |
SeipK. Interpolation and sampling in spaces of analytic functions. University Lecture Series, Vol 33. Providence, RI: AMS, 2004
|
44 |
Seip K, Wallstén R. Density theorems for sampling and interpolation in the Bargmann-Fock space, II. J Reine Angew Math 1992; 429: 107–113
|
45 |
Strohmer T. Approximation of dual Gabor frames, window decay, and wireless communications. Appl Comput Harmon Anal 2001; 11(2): 243–262
|
46 |
Strohmer T. Pseudodifferential operators and Banach algebras in mobile communications. Appl Comput Harmon Anal 2006; 20(2): 237–249
|
/
〈 | 〉 |