The frame sets of the B-splines

Dengfeng LI

PDF(499 KB)
PDF(499 KB)
Front. Math. China ›› 2023, Vol. 18 ›› Issue (4) : 223-233. DOI: 10.3868/s140-DDD-023-0021-x
SURVEY ARTICLE
SURVEY ARTICLE

The frame sets of the B-splines

Author information +
History +

Abstract

It is not completely clear which elements constitute the frame sets of the B-splines currently, but some considerable results have been obtained. In this paper, firstly, the background of frame set is introduced. Secondly, the main progress of the frame sets of the B-splines in the past more than twenty years are reviewed, and particularly the progress for the frame set of the 2 order B-spline and the frame set of the 3 order B-spline are explained, respectively.

Keywords

B-spline / Gabor frame / frame set

Cite this article

Download citation ▾
Dengfeng LI. The frame sets of the B-splines. Front. Math. China, 2023, 18(4): 223‒233 https://doi.org/10.3868/s140-DDD-023-0021-x

E-mail: dfli2003@aliyun.com

References

[1]
Atindehou A G D. On the frame set for the 3-spline. Appl Math 2022; 13: 377–400
[2]
Atindehou A G D, Frederick C, Kouagou Y B, Okoudjou K A. On the frame set of the second-order B-spline. Appl Comput Harmon Anal 2023; 62: 237–250
[3]
AtindehouA G DKouagouY BOkoudjouK A. Frame sets for generalized B-splines. 2018, arXiv: 1804-02450
[4]
Atindehou A G D, Kouagou Y B, Okoudjou K A. Frame sets for a class of compactly supported continuous functions. Asian-Eur J Math 2020; 13(5): 2050093
[5]
AtindehouA G DYebeniBKouagouY BOkoudjouK. A. Frame sets for generalized B-splines. 2018, arXiv: 1804.02450v2
[6]
Belov Y, Kulikov A, Lyubarskii Y. Gabor frames for rational functions. Invent Math 2023; 23(2): 431–466
[7]
BényiÁOkoudjouK A. Modulation Spaces: With Applications to Pseudodifferential Operators and Nonlinear Schrödinger Equations. Applied and Numerical Harmonic Analysis. New York: Birkhaüser/Springer, 2020
[8]
ChristensenO. Six (seven) problems in frame theory. In: New Perspectives on Approximation and Sampling Theory. Applied and Numerical Harmonic Analysis. Cham: Birkhaüser/Springer, 2014, 337–358
[9]
ChristensenO. An Introduction to Frames and Riesz Bases, 2nd ed. Applied and Numerical Harmonic Analysis. Cham: Birkhaüser/Springer, 2016
[10]
Christensen O, Kim H O, Kim R Y. Gabor windows supported on [−1,1] and compactly supported dual windows. Appl Comput Harmon Anal 2010; 28(1): 89–103
[11]
Christensen O, Kim H O, Kim R Y. On Gabor frames generated by sign-changing windows and B-splines. Appl Comput Harmon Anal 2015; 39(3): 534–544
[12]
Christensen O, Kim H O, Kim R Y. On Gabor frame set for compactly supported continuous functions. J Inequal Appl 2016; 94
[13]
Dai X R, Sun Q Y. The abc-problem for Gabor systems. Mem Amer Math Soc 2016; 244(1152): ix+99 pp
[14]
DaiX RZhuM. Frame sets for Gabor systems with Haar window. 2022, arXiv: 2205.06479v1
[15]
Daubechies I. The wavelet transform, time-frequency localization and signal analysis. IEEE Trans Inform Theory 1990; 36(5): 961–1005
[16]
DaubechiesI. Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series in Applied Mathematics, Vol 61. Philadelphia, PA: SIAM, 1992
[17]
Daubechies I, Landau H, Landau Z. Gabor time-frequency lattices and the Wexler-Raz identity. J Fourier Anal Appl 1995; 1(4): 437–478
[18]
Feichtinger H G, Gröchenig K. Gabor frames and time-frequency analysis of distributions. J Funct Anal 1997; 146(2): 464–495
[19]
Feichtinger H G, Kaiblinger N. Varying the time-frequency lattices of Gabor frames. Trans Amer Math Soc 2004; 356(5): 2001–2023
[20]
FeichtibgerH GStrohmerT (eds). Gabor Analysis and Algorithms: Theory and Applications. Applied and Numerical Harmonic Analysis. Boston, MA: Birkhaüser Boston, Inc, 1998
[21]
FeichtingerH GStrohmerT (eds). Advances in Gabor Analysis. Applied and Nu- merical Harmonic Analysis. Boston, MA: Birkhaüser Boston, Inc, 2003
[22]
GröchenigK. Foundations of Time-Frequency Analysis. Applied and Numerical Har- monic Analysis. Boston, MA: Birkhaüser Boston, Inc, 2001
[23]
Gröchenig K. Time-frequency analysis of Sjöstrand’s class. Rev Mat Iberoam 2006; 22(2): 703–724
[24]
Gröchenig K. The mystery of Gabor frames. J Fourier Anal Appl 2014; 20(4): 865–895
[25]
Gröchenig K, Romero J L, Stöckler J. Sampling theorems for shift-invariant spaces, Gabor frames, and totally positive functions. Invent Math 2018; 211(3): 1119–1148
[26]
Gröchenig K, Romero J L, Stöckler J. Sharp results on sampling with derivatives in shift-invariant spaces and multi-window Gabor frames. Constr Approx 2020; 51(1): 1–25
[27]
Gröchenig K, Stöckler J. Gabor frames and totally positive functions. Duke Math J 2013; 162(6): 1003–1031
[28]
Gu Q, Han D G. When a characteristic function generates a Gabor frame?. Appl Comput Harmon Anal 2008; 24(3): 290–309
[29]
Heil C. History and evolution of the density theorem for Gabor frames. J Fourier Anal Appl 2007; 13(2): 113–166
[30]
HlawatschFMatzG. Wireless communications over rapidly time-varying channels. Amsterdam: Academic Press, 2011
[31]
Janssen A J E M. Some Weyl-Heisenberg frame bound calculations. Indag Math (N S) 1996; 7(2): 165–183
[32]
Janssen A J E M. On generating tight Gabor frames at critical density. J Fourier Anal Appl 2003; 9(2): 175–214
[33]
JanssenA J E M. Zak transforms with few zeros and the tie. In: Advances in Gabor Analysis. App Numer Harmon Anal. Boston, MA: Birkhaüser Boston, Inc, 2003, 31–70
[34]
Janssen A J E M, Strohmer T. Hyperbolic secants yield Gabor frames. Appl Comput Harmon Anal 2002; 12(2): 259–267
[35]
Kloos T, Stöckler J. Zak transforms and Gabor frames of totally positive functions and exponential B-splines. J Approx Theory 2014; 184: 209–237
[36]
Lemvig J, Nielsen K H. Counterexamples to the B-spline conjecture for Gabor frames. J Fourier Anal Appl 2016; 22(6): 1440–1451
[37]
LiD F. Mathematical Theory of Wavelet Analysis. Beijing: Science Press, 2017 (in Chinese)
[38]
Luef F. Projective modules over noncommutative tori are multi-window Gabor frames for modulation spaces. J Funct Anal 2009; 257(6): 1921–1946
[39]
LyubarskiiY I. Frames in the Bargmann space of entire function functions. In: Entire and Subharmonic Functions. Adv Sovit Math, Vol 11. Providence, RI: AMS, 1992, 167–180
[40]
NielsenK H. The frame set of Gabor systems with B-spline generators. Master Thesis. København: Technical University of Denmark, 2015
[41]
Okoudjou K A. An invitation to Gabor analysis. Notices Amer Math Soc 2019; 66(6): 808–819
[42]
Seip K. Density theorems for sampling and interpolation in the Bargmann-Fock space, I. J Reine Angew Math 1992; 429: 91–106
[43]
SeipK. Interpolation and sampling in spaces of analytic functions. University Lecture Series, Vol 33. Providence, RI: AMS, 2004
[44]
Seip K, Wallstén R. Density theorems for sampling and interpolation in the Bargmann-Fock space, II. J Reine Angew Math 1992; 429: 107–113
[45]
Strohmer T. Approximation of dual Gabor frames, window decay, and wireless communications. Appl Comput Harmon Anal 2001; 11(2): 243–262
[46]
Strohmer T. Pseudodifferential operators and Banach algebras in mobile communications. Appl Comput Harmon Anal 2006; 20(2): 237–249

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Grant No. 61471410).

RIGHTS & PERMISSIONS

2023 Higher Education Press 2023
AI Summary AI Mindmap
PDF(499 KB)

Accesses

Citations

Detail

Sections
Recommended

/