SURVEY ARTICLE

Connectivity of wavelets

  • Dengfeng LI
Expand
  • School of Mathematics and Physics Science, Wuhan Textile University, Wuhan 430200, China

Copyright

2023 Higher Education Press 2023

Abstract

In this paper, path-connectivity of the set of some special wavelets in L2(R), which is the topological geometric property of wavelets, is introduced. In particular, the main progress of wavelet connectivity in the past twenty years is reviewed and some unsolved problems are listed. The corresponding results of high dimension case and other cases are also briefly explained.

Cite this article

Dengfeng LI . Connectivity of wavelets[J]. Frontiers of Mathematics in China, 2023 , 18(2) : 95 -104 . DOI: 10.3868/s140-DDD-023-0009-x

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Grant No. 61471410).
1
Azoff E, Ionascu E, Larson D. . Direct paths of wavelets. Houston J Math 2003; 29: 737–756

2
Benedetto J, Li S D. The theory of multiresolution analysis frames and applications to filter banks. Appl Comput Harmonic Anal 1998; 5(4): 389–427

3
Bownik M. Connectivity and density in the set of framelets. Math Res Lett 2007; 14: 285–293

4
Cabrelli C, Molter U. Density of the set of generators of wavelet systems. Constr Approx 2007; 26: 65–81

5
ChristensenO. An Introduction to Frames and Riesz Bases. 2nd ed. Boston: Birkhäuser, 2016

6
Dai X D, Diao Y N. The path-connectivity of s-elementary tight frame wavelets. J Appl Func Anal 2007; 2(4): 309–316

7
Dai X D, Diao Y N, Gu Q. Frame wavelet sets in R. Proc Amer Math Soc 2001; 129(7): 2045–2055

8
Dai X D, Diao Y N, Gu Q, Han D G. Wavelets with frame multiresolution analysis. J Fourier Anal Appl 2003; 9(1): 39–48

9
Dai X D, Diao Y N, Gu Q, Han D G. The s-elementary frame wavelets are path-connected. Proc Amer Math Soc 2004; 132(9): 2567–2575

10
Dai X D, Diao Y N, Guo X X. On the direct path problem of s-elementary frame wavelets. Sci China Math 2010; 53(12): 3187–3196

11
Dai X D, Diao Y N, Li Z Y. The path-connectivity of s-elementary frame wavelets with frame MRA. Acta Appl Math 2009; 107: 203–210

12
Dai X D, Larson D. Wandering vectors for unitary systems and orthogonal wavelets. Memoirs Amer Math Soc 1998; 134(640): (68 pp)

13
DaubechiesI. Ten Lectures on Wavelets. Regional Conference Series in Applied Mathematics, Vol 61. Philadelphia, PA: SIAM, 1992

14
Diao Y N, Li Z Y. On S-elementary super frame wavelets and their path-connectedness. Acta Appl Math 2011; 116: 157–171

15
Garrigós G, Hernández E, Šikić H, Soria F. Further results on the connectivity of Parseval frame wavelets. Proc Amer Math Soc 2006; 134(11): 3211–3221

16
Garrigós G, Hernández E, Šikić H., Soria F, Weiss G. Connectivity in the set of tight frame wavelets (TFW). Glas Mat 2003; 38(58): 75–98

17
Gu Q. On interpolation families of wavelets. Proc Amer Math Soc 2000; 128(10): 2973–2979

18
HanB. Framelets and Wavelets: Algorithms, Analysis, and Applications. Cham: Birkhäuser, 2017

19
Han D G, Larson D. On the orthogonality of frames and the density and connectivity of wavelet frames. Acta Appl Math 2009; 107: 211–222

20
Hernández E, Wang X, Weiss G. Smoothing minimally supported frequency wavelets I. J Fourier Anal Appl 1996; 2(4): 329–340

21
Hernández E, Wang X, Weiss G. Smoothing minimally supported frequency wavelets II. J Fourier Anal Appl 1997; 3(1): 23–41

22
Labate D, Wilson E. Connectivity in the set of Gabor frames. Appl Comput Harmonic Anal 2005; 18(1): 123–136

23
LarsonD. Unitary systems and wavelets sets. In: Qian T, Vai M I, Xu Y, eds. Wavelet Analysis and Applications. Appl Numer Harmonic Anal, Basel: Birkhäuser, 2007, 143–171

24
LiD F. Mathematical Theory of Wavelet Analysis. Beijing: Science Press, 2017 (in Chinese)

25
Li D F, Cheng J F. Some applications of E-wavelet multipliers. Chinese Quart J Math 2004; 19(3): 292–299

26
Li D F, Cheng J F. Construction of MRA E-tight frame wavelets, multipliers and connectivity properties. Int J Wavelets Multiresolut Inf Process 2011; 9(5): 713–729

27
LiD FXueM Z. Bases and Frames in Banach Spaces. Beijing: Science Press, 2007 (in Chinese)

28
Li Y Z. On a class of bidimensional nonseparable wavelet multipliers. J Math Anal Appl 2002; 270: 543–560

29
Li Y Z, Xue Y Q. The equivalence between seven classes of wavelet multipliers and arcwise connectivity they induce. J Fourier Anal Appl 2013; 19: 1060–1077

30
Li Z Y, Dai X D, Diao Y N. Intrinsic s-elementary Parseval frame multiwavelets in L2(Rd). J Math Anal App 2010; 367: 677–684

31
Li Z Y, Dai X D, Diao Y N, Huang W. The path-connectivity of MRA wavelets in L2(Rd). Illinois J Math 2010; 54: 601–620

32
Li Z Y, Dai X D, Diao Y N, Xin J G. Multipliers, phases and connectivity of MRA wavelets in L2(R2). J Fourier Anal Appl 2010; 16: 155–176

33
Li Z Y, Shi X L. On Parseval super frame wavelets. Appl Math J Chinese Univ 2012; 27(2): 192–204

34
Li Z Y, Shi X L. Parseval frame wavelet multipliers in L2(Rd). Chin Ann Math Ser B 2012; 33: 949–960

35
Paluszyński M, Šikić H, Weiss G, Xiao S. Generalized low pass filters and MRA frame wavelets. J Geom Anal 2001; 11: 311–342

36
Paluszyński M, Šikić H, Weiss G, Xiao S. Tight frame wavelets, their dimension functions, MRA tight frame wavelets and connectivity properties. Adv Comput Math 2003; 18: 297–327

37
Singh D. Path-connectivity of two-interval MSF wavelets. Kyungpook Math J 2011; 51: 293–300

38
Speegle D. S-elementary wavelets are path-connected. Proc Amer Math Soc 1999; 127(1): 223–233

39
The Wutam Consortium. Basic properties of wavelets. J Fourier Anal Appl 1998; 4: 575–594

Outlines

/