Connectivity of wavelets

Dengfeng LI

PDF(475 KB)
PDF(475 KB)
Front. Math. China ›› 2023, Vol. 18 ›› Issue (2) : 95-104. DOI: 10.3868/s140-DDD-023-0009-x
SURVEY ARTICLE
SURVEY ARTICLE

Connectivity of wavelets

Author information +
History +

Abstract

In this paper, path-connectivity of the set of some special wavelets in L2(R), which is the topological geometric property of wavelets, is introduced. In particular, the main progress of wavelet connectivity in the past twenty years is reviewed and some unsolved problems are listed. The corresponding results of high dimension case and other cases are also briefly explained.

Keywords

Wavelet / MRA wavelet / S–elementary wavelet / frame wavelet / path-connectivity

Cite this article

Download citation ▾
Dengfeng LI. Connectivity of wavelets. Front. Math. China, 2023, 18(2): 95‒104 https://doi.org/10.3868/s140-DDD-023-0009-x

E-mail: dfli2003@aliyun.com

References

[1]
Azoff E, Ionascu E, Larson D. . Direct paths of wavelets. Houston J Math 2003; 29: 737–756
[2]
Benedetto J, Li S D. The theory of multiresolution analysis frames and applications to filter banks. Appl Comput Harmonic Anal 1998; 5(4): 389–427
[3]
Bownik M. Connectivity and density in the set of framelets. Math Res Lett 2007; 14: 285–293
[4]
Cabrelli C, Molter U. Density of the set of generators of wavelet systems. Constr Approx 2007; 26: 65–81
[5]
ChristensenO. An Introduction to Frames and Riesz Bases. 2nd ed. Boston: Birkhäuser, 2016
[6]
Dai X D, Diao Y N. The path-connectivity of s-elementary tight frame wavelets. J Appl Func Anal 2007; 2(4): 309–316
[7]
Dai X D, Diao Y N, Gu Q. Frame wavelet sets in R. Proc Amer Math Soc 2001; 129(7): 2045–2055
[8]
Dai X D, Diao Y N, Gu Q, Han D G. Wavelets with frame multiresolution analysis. J Fourier Anal Appl 2003; 9(1): 39–48
[9]
Dai X D, Diao Y N, Gu Q, Han D G. The s-elementary frame wavelets are path-connected. Proc Amer Math Soc 2004; 132(9): 2567–2575
[10]
Dai X D, Diao Y N, Guo X X. On the direct path problem of s-elementary frame wavelets. Sci China Math 2010; 53(12): 3187–3196
[11]
Dai X D, Diao Y N, Li Z Y. The path-connectivity of s-elementary frame wavelets with frame MRA. Acta Appl Math 2009; 107: 203–210
[12]
Dai X D, Larson D. Wandering vectors for unitary systems and orthogonal wavelets. Memoirs Amer Math Soc 1998; 134(640): (68 pp)
[13]
DaubechiesI. Ten Lectures on Wavelets. Regional Conference Series in Applied Mathematics, Vol 61. Philadelphia, PA: SIAM, 1992
[14]
Diao Y N, Li Z Y. On S-elementary super frame wavelets and their path-connectedness. Acta Appl Math 2011; 116: 157–171
[15]
Garrigós G, Hernández E, Šikić H, Soria F. Further results on the connectivity of Parseval frame wavelets. Proc Amer Math Soc 2006; 134(11): 3211–3221
[16]
Garrigós G, Hernández E, Šikić H., Soria F, Weiss G. Connectivity in the set of tight frame wavelets (TFW). Glas Mat 2003; 38(58): 75–98
[17]
Gu Q. On interpolation families of wavelets. Proc Amer Math Soc 2000; 128(10): 2973–2979
[18]
HanB. Framelets and Wavelets: Algorithms, Analysis, and Applications. Cham: Birkhäuser, 2017
[19]
Han D G, Larson D. On the orthogonality of frames and the density and connectivity of wavelet frames. Acta Appl Math 2009; 107: 211–222
[20]
Hernández E, Wang X, Weiss G. Smoothing minimally supported frequency wavelets I. J Fourier Anal Appl 1996; 2(4): 329–340
[21]
Hernández E, Wang X, Weiss G. Smoothing minimally supported frequency wavelets II. J Fourier Anal Appl 1997; 3(1): 23–41
[22]
Labate D, Wilson E. Connectivity in the set of Gabor frames. Appl Comput Harmonic Anal 2005; 18(1): 123–136
[23]
LarsonD. Unitary systems and wavelets sets. In: Qian T, Vai M I, Xu Y, eds. Wavelet Analysis and Applications. Appl Numer Harmonic Anal, Basel: Birkhäuser, 2007, 143–171
[24]
LiD F. Mathematical Theory of Wavelet Analysis. Beijing: Science Press, 2017 (in Chinese)
[25]
Li D F, Cheng J F. Some applications of E-wavelet multipliers. Chinese Quart J Math 2004; 19(3): 292–299
[26]
Li D F, Cheng J F. Construction of MRA E-tight frame wavelets, multipliers and connectivity properties. Int J Wavelets Multiresolut Inf Process 2011; 9(5): 713–729
[27]
LiD FXueM Z. Bases and Frames in Banach Spaces. Beijing: Science Press, 2007 (in Chinese)
[28]
Li Y Z. On a class of bidimensional nonseparable wavelet multipliers. J Math Anal Appl 2002; 270: 543–560
[29]
Li Y Z, Xue Y Q. The equivalence between seven classes of wavelet multipliers and arcwise connectivity they induce. J Fourier Anal Appl 2013; 19: 1060–1077
[30]
Li Z Y, Dai X D, Diao Y N. Intrinsic s-elementary Parseval frame multiwavelets in L2(Rd). J Math Anal App 2010; 367: 677–684
[31]
Li Z Y, Dai X D, Diao Y N, Huang W. The path-connectivity of MRA wavelets in L2(Rd). Illinois J Math 2010; 54: 601–620
[32]
Li Z Y, Dai X D, Diao Y N, Xin J G. Multipliers, phases and connectivity of MRA wavelets in L2(R2). J Fourier Anal Appl 2010; 16: 155–176
[33]
Li Z Y, Shi X L. On Parseval super frame wavelets. Appl Math J Chinese Univ 2012; 27(2): 192–204
[34]
Li Z Y, Shi X L. Parseval frame wavelet multipliers in L2(Rd). Chin Ann Math Ser B 2012; 33: 949–960
[35]
Paluszyński M, Šikić H, Weiss G, Xiao S. Generalized low pass filters and MRA frame wavelets. J Geom Anal 2001; 11: 311–342
[36]
Paluszyński M, Šikić H, Weiss G, Xiao S. Tight frame wavelets, their dimension functions, MRA tight frame wavelets and connectivity properties. Adv Comput Math 2003; 18: 297–327
[37]
Singh D. Path-connectivity of two-interval MSF wavelets. Kyungpook Math J 2011; 51: 293–300
[38]
Speegle D. S-elementary wavelets are path-connected. Proc Amer Math Soc 1999; 127(1): 223–233
[39]
The Wutam Consortium. Basic properties of wavelets. J Fourier Anal Appl 1998; 4: 575–594

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Grant No. 61471410).

RIGHTS & PERMISSIONS

2023 Higher Education Press 2023
AI Summary AI Mindmap
PDF(475 KB)

Accesses

Citations

Detail

Sections
Recommended

/