Frontiers of Mathematics in China >
Fredholm theory for pseudoholomorphic curves with brake symmetry
Received date: 30 Nov 2020
Accepted date: 10 Mar 2021
Copyright
We study the pseudoholomorphic curves with brake symmetry in symplectization of a closed contact manifold. We introduce the pseudo-holomorphic curves with brake symmetry and the corresponding moduli space. Then we get the virtual dimension of the moduli space.
Key words: Pseudoholomorphic curve; brake symmetry; moduli space; virtual dimension
Beijia ZHOU , Chaofeng ZHU . Fredholm theory for pseudoholomorphic curves with brake symmetry[J]. Frontiers of Mathematics in China, 2022 , 17(6) : 1201 -1234 . DOI: 10.1007/s11464-021-0935-4
1 |
Abikoff W. The Real Analytic Theory of Teichmüller Space. Lecture Notes in Math, Vol 820. Berlin: Springer-Verlag, 1980
|
2 |
Bourgeois F. A Morse-Bott Approach to Contact Homology. Ph D Thesis. Stanford: Stanford Univ, 2002
|
3 |
Bourgeois F, Eliashberg Y, Hofer H, Wysocki K, Zehnder E. Compactness results in symplectic field theory. Geom Topol, 2003, 7: 799- 888
|
4 |
Bourgeois F, Oancea A. An exact sequence for contact and symplectic homology. Invent Math, 2009, 175: 611- 680
|
5 |
Cappell S E, Lee R, Miller E Y. On the Maslov index. Comm Pure Appl Math, 1994, 47 (2): 121- 186
|
6 |
Dragnev D. Fredholm theory and transversality for noncompact pseudoholomorphic maps in symplectizations. Comm Pure Appl Math, 2004, 57 (6): 726- 763
|
7 |
Eliashberg Y, Givental A, Hofer H. Introduction to symplectic field theory. In: Alon N, Bourgain J, Connes A, Gromov M, Milman V, eds. Visions in Mathematics: GAFA 2000 Special Volume, Part II. Modern Birkhäuser Classics. Basel: Birkhäuser, 2010, 560- 673
|
8 |
Frauenfelder U, Kang J. Real holomorphic curves and invariant global surfaces of section. Proc Lond Math Soc, 2016, 112 (3): 477- 511
|
9 |
Geiges H. An Introduction to Contact Topology. Cambridge: Cambridge Univ Press, 2008
|
10 |
Gromov M. Pseudo holomorphic curves in symplectic manifolds. Invent Math, 1985, 82: 307- 347
|
11 |
Hofer H. Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three. Invent Math, 1993, 114: 515- 563
|
12 |
Hofer H, Wysocki K, Zehnder E. Properties of pseudo-holomorphic curves in symplectisations. II. Embedding controls and algebraic invariants. In: Eliashberg Y, Milman V, Polterovich L, Schoen R, eds. Geometries in Interaction: GAFA Special Issue in Honor of Mikhail Gromov. Basel: Birkhäuser, 1995, 270- 328
|
13 |
Hofer H, Wysocki K, Zehnder E. Properties of pseudoholomorphic curves in symplectisations. I: Asymptotics. Ann Inst H Poincaré Anal Non Linéaire, 1996, 13 (3): 337- 379
|
14 |
Hofer H, Wysocki K, Zehnder E. Properties of pseudoholomorphic curves in symplectisations. III. Fredholm Theory. In: Topics in Nonlinear Analysis. Basel: Birkhäuser, 1999, 381- 475
|
15 |
Hubbard J H. Teichmüller Theory and Applications to Geometry, Topology, and Dynamics. Ithaca: Matrix Editions, 2016
|
16 |
Kim J, Kim S, Kwon M. Equivariant wrapped Floer homology and symmetric periodic Reeb orbits. Ergodic Theory Dynam Systems, 2021,
|
17 |
Liu C, Zhang D. Seifert conjecture in the even convex case. Comm Pure Appl Math, 2014, 67 (10): 1563- 1604
|
18 |
Long Y. Index Theory for Symplectic Paths with Applications. Progr Math , Vol 207. Basel: Birkhäuser, 2002
|
19 |
Long Y, Zhang D, Zhu C. Multiple brake orbits in bounded convex symmetric domains. Adv Math, 2006, 203 (2): 568- 635
|
20 |
McDuff D, Salamon D. J-Holomorphic Curves and Symplectic Topology. 2nd ed. Providence: Amer Math Soc, 2012
|
21 |
McDuff D, Salamon D. Introduction to Symplectic Topology. 3rd ed. Oxford: Oxford Univ Press, 2017
|
22 |
Mora E. Pseudoholomorphic Cylinders in Symplectisations. Ph D Thesis. New York: New York Univ, 2003
|
23 |
Natanzon S. Moduli of real algebraic surfaces, and their superanalogues, differentials, spinors, and Jacobians of real curves Uspekhi Mat Nauk, 1999, 54 (6): 3- 60
|
24 |
Papadopoulos A, ed . Handbook of Teichmüller Theory, Vol 1. IRMA Lectures in Mathematics and Theoretical Physics, Vol 11. Zürich: European Math Soc, 2007
|
25 |
Robbin J, Salamon D. The Maslov index for paths. Topology, 1993, 32 (4): 827- 844
|
26 |
Schwarz M. Cohomology operation from S1-cobordisms in Floer homology. Ph D Thesis. Zürich: ETH–Zürich, 1995
|
27 |
Seifert H. Periodische bewegungen mechanischer systeme. Math Z, 1948, 51: 197- 216
|
28 |
Siefring R. Relative asymptotic behavior of pseudoholomorphic half-cylinders. Comm Pure Appl Math, 2008, 61: 1631- 1684
|
/
〈 | 〉 |