RESEARCH ARTICLE

Fredholm theory for pseudoholomorphic curves with brake symmetry

  • Beijia ZHOU ,
  • Chaofeng ZHU
Expand
  • Chern Institute of Mathematics, Nankai University and LPMC, Tianjin 300071, China

Received date: 30 Nov 2020

Accepted date: 10 Mar 2021

Copyright

2022 Higher Education Press

Abstract

We study the pseudoholomorphic curves with brake symmetry in symplectization of a closed contact manifold. We introduce the pseudo-holomorphic curves with brake symmetry and the corresponding moduli space. Then we get the virtual dimension of the moduli space.

Cite this article

Beijia ZHOU , Chaofeng ZHU . Fredholm theory for pseudoholomorphic curves with brake symmetry[J]. Frontiers of Mathematics in China, 2022 , 17(6) : 1201 -1234 . DOI: 10.1007/s11464-021-0935-4

1
Abikoff W. The Real Analytic Theory of Teichmüller Space. Lecture Notes in Math, Vol 820. Berlin: Springer-Verlag, 1980

2
Bourgeois F. A Morse-Bott Approach to Contact Homology. Ph D Thesis. Stanford: Stanford Univ, 2002

3
Bourgeois F, Eliashberg Y, Hofer H, Wysocki K, Zehnder E. Compactness results in symplectic field theory. Geom Topol, 2003, 7: 799- 888

4
Bourgeois F, Oancea A. An exact sequence for contact and symplectic homology. Invent Math, 2009, 175: 611- 680

5
Cappell S E, Lee R, Miller E Y. On the Maslov index. Comm Pure Appl Math, 1994, 47 (2): 121- 186

6
Dragnev D. Fredholm theory and transversality for noncompact pseudoholomorphic maps in symplectizations. Comm Pure Appl Math, 2004, 57 (6): 726- 763

7
Eliashberg Y, Givental A, Hofer H. Introduction to symplectic field theory. In: Alon N, Bourgain J, Connes A, Gromov M, Milman V, eds. Visions in Mathematics: GAFA 2000 Special Volume, Part II. Modern Birkhäuser Classics. Basel: Birkhäuser, 2010, 560- 673

8
Frauenfelder U, Kang J. Real holomorphic curves and invariant global surfaces of section. Proc Lond Math Soc, 2016, 112 (3): 477- 511

9
Geiges H. An Introduction to Contact Topology. Cambridge: Cambridge Univ Press, 2008

10
Gromov M. Pseudo holomorphic curves in symplectic manifolds. Invent Math, 1985, 82: 307- 347

11
Hofer H. Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three. Invent Math, 1993, 114: 515- 563

12
Hofer H, Wysocki K, Zehnder E. Properties of pseudo-holomorphic curves in symplectisations. II. Embedding controls and algebraic invariants. In: Eliashberg Y, Milman V, Polterovich L, Schoen R, eds. Geometries in Interaction: GAFA Special Issue in Honor of Mikhail Gromov. Basel: Birkhäuser, 1995, 270- 328

13
Hofer H, Wysocki K, Zehnder E. Properties of pseudoholomorphic curves in symplectisations. I: Asymptotics. Ann Inst H Poincaré Anal Non Linéaire, 1996, 13 (3): 337- 379

14
Hofer H, Wysocki K, Zehnder E. Properties of pseudoholomorphic curves in symplectisations. III. Fredholm Theory. In: Topics in Nonlinear Analysis. Basel: Birkhäuser, 1999, 381- 475

15
Hubbard J H. Teichmüller Theory and Applications to Geometry, Topology, and Dynamics. Ithaca: Matrix Editions, 2016

16
Kim J, Kim S, Kwon M. Equivariant wrapped Floer homology and symmetric periodic Reeb orbits. Ergodic Theory Dynam Systems, 2021,

DOI

17
Liu C, Zhang D. Seifert conjecture in the even convex case. Comm Pure Appl Math, 2014, 67 (10): 1563- 1604

18
Long Y. Index Theory for Symplectic Paths with Applications. Progr Math , Vol 207. Basel: Birkhäuser, 2002

19
Long Y, Zhang D, Zhu C. Multiple brake orbits in bounded convex symmetric domains. Adv Math, 2006, 203 (2): 568- 635

20
McDuff D, Salamon D. J-Holomorphic Curves and Symplectic Topology. 2nd ed. Providence: Amer Math Soc, 2012

21
McDuff D, Salamon D. Introduction to Symplectic Topology. 3rd ed. Oxford: Oxford Univ Press, 2017

22
Mora E. Pseudoholomorphic Cylinders in Symplectisations. Ph D Thesis. New York: New York Univ, 2003

23
Natanzon S. Moduli of real algebraic surfaces, and their superanalogues, differentials, spinors, and Jacobians of real curves Uspekhi Mat Nauk, 1999, 54 (6): 3- 60

24
Papadopoulos A, ed . Handbook of Teichmüller Theory, Vol 1. IRMA Lectures in Mathematics and Theoretical Physics, Vol 11. Zürich: European Math Soc, 2007

25
Robbin J, Salamon D. The Maslov index for paths. Topology, 1993, 32 (4): 827- 844

26
Schwarz M. Cohomology operation from S1-cobordisms in Floer homology. Ph D Thesis. Zürich: ETH–Zürich, 1995

27
Seifert H. Periodische bewegungen mechanischer systeme. Math Z, 1948, 51: 197- 216

28
Siefring R. Relative asymptotic behavior of pseudoholomorphic half-cylinders. Comm Pure Appl Math, 2008, 61: 1631- 1684

Outlines

/