Fredholm theory for pseudoholomorphic curves with brake symmetry
Beijia ZHOU, Chaofeng ZHU
Fredholm theory for pseudoholomorphic curves with brake symmetry
We study the pseudoholomorphic curves with brake symmetry in symplectization of a closed contact manifold. We introduce the pseudo-holomorphic curves with brake symmetry and the corresponding moduli space. Then we get the virtual dimension of the moduli space.
Pseudoholomorphic curve / brake symmetry / moduli space / virtual dimension
[1] |
Abikoff W. The Real Analytic Theory of Teichmüller Space. Lecture Notes in Math, Vol 820. Berlin: Springer-Verlag, 1980
|
[2] |
Bourgeois F. A Morse-Bott Approach to Contact Homology. Ph D Thesis. Stanford: Stanford Univ, 2002
|
[3] |
Bourgeois F, Eliashberg Y, Hofer H, Wysocki K, Zehnder E. Compactness results in symplectic field theory. Geom Topol, 2003, 7: 799- 888
|
[4] |
Bourgeois F, Oancea A. An exact sequence for contact and symplectic homology. Invent Math, 2009, 175: 611- 680
|
[5] |
Cappell S E, Lee R, Miller E Y. On the Maslov index. Comm Pure Appl Math, 1994, 47 (2): 121- 186
|
[6] |
Dragnev D. Fredholm theory and transversality for noncompact pseudoholomorphic maps in symplectizations. Comm Pure Appl Math, 2004, 57 (6): 726- 763
|
[7] |
Eliashberg Y, Givental A, Hofer H. Introduction to symplectic field theory. In: Alon N, Bourgain J, Connes A, Gromov M, Milman V, eds. Visions in Mathematics: GAFA 2000 Special Volume, Part II. Modern Birkhäuser Classics. Basel: Birkhäuser, 2010, 560- 673
|
[8] |
Frauenfelder U, Kang J. Real holomorphic curves and invariant global surfaces of section. Proc Lond Math Soc, 2016, 112 (3): 477- 511
|
[9] |
Geiges H. An Introduction to Contact Topology. Cambridge: Cambridge Univ Press, 2008
|
[10] |
Gromov M. Pseudo holomorphic curves in symplectic manifolds. Invent Math, 1985, 82: 307- 347
|
[11] |
Hofer H. Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three. Invent Math, 1993, 114: 515- 563
|
[12] |
Hofer H, Wysocki K, Zehnder E. Properties of pseudo-holomorphic curves in symplectisations. II. Embedding controls and algebraic invariants. In: Eliashberg Y, Milman V, Polterovich L, Schoen R, eds. Geometries in Interaction: GAFA Special Issue in Honor of Mikhail Gromov. Basel: Birkhäuser, 1995, 270- 328
|
[13] |
Hofer H, Wysocki K, Zehnder E. Properties of pseudoholomorphic curves in symplectisations. I: Asymptotics. Ann Inst H Poincaré Anal Non Linéaire, 1996, 13 (3): 337- 379
|
[14] |
Hofer H, Wysocki K, Zehnder E. Properties of pseudoholomorphic curves in symplectisations. III. Fredholm Theory. In: Topics in Nonlinear Analysis. Basel: Birkhäuser, 1999, 381- 475
|
[15] |
Hubbard J H. Teichmüller Theory and Applications to Geometry, Topology, and Dynamics. Ithaca: Matrix Editions, 2016
|
[16] |
Kim J, Kim S, Kwon M. Equivariant wrapped Floer homology and symmetric periodic Reeb orbits. Ergodic Theory Dynam Systems, 2021,
CrossRef
Google scholar
|
[17] |
Liu C, Zhang D. Seifert conjecture in the even convex case. Comm Pure Appl Math, 2014, 67 (10): 1563- 1604
|
[18] |
Long Y. Index Theory for Symplectic Paths with Applications. Progr Math , Vol 207. Basel: Birkhäuser, 2002
|
[19] |
Long Y, Zhang D, Zhu C. Multiple brake orbits in bounded convex symmetric domains. Adv Math, 2006, 203 (2): 568- 635
|
[20] |
McDuff D, Salamon D. J-Holomorphic Curves and Symplectic Topology. 2nd ed. Providence: Amer Math Soc, 2012
|
[21] |
McDuff D, Salamon D. Introduction to Symplectic Topology. 3rd ed. Oxford: Oxford Univ Press, 2017
|
[22] |
Mora E. Pseudoholomorphic Cylinders in Symplectisations. Ph D Thesis. New York: New York Univ, 2003
|
[23] |
Natanzon S. Moduli of real algebraic surfaces, and their superanalogues, differentials, spinors, and Jacobians of real curves Uspekhi Mat Nauk, 1999, 54 (6): 3- 60
|
[24] |
Papadopoulos A, ed . Handbook of Teichmüller Theory, Vol 1. IRMA Lectures in Mathematics and Theoretical Physics, Vol 11. Zürich: European Math Soc, 2007
|
[25] |
Robbin J, Salamon D. The Maslov index for paths. Topology, 1993, 32 (4): 827- 844
|
[26] |
Schwarz M. Cohomology operation from S1-cobordisms in Floer homology. Ph D Thesis. Zürich: ETH–Zürich, 1995
|
[27] |
Seifert H. Periodische bewegungen mechanischer systeme. Math Z, 1948, 51: 197- 216
|
[28] |
Siefring R. Relative asymptotic behavior of pseudoholomorphic half-cylinders. Comm Pure Appl Math, 2008, 61: 1631- 1684
|
/
〈 | 〉 |