Fredholm theory for pseudoholomorphic curves with brake symmetry

Beijia ZHOU , Chaofeng ZHU

Front. Math. China ›› 2022, Vol. 17 ›› Issue (6) : 1201 -1234.

PDF (386KB)
Front. Math. China ›› 2022, Vol. 17 ›› Issue (6) : 1201 -1234. DOI: 10.1007/s11464-021-0935-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Fredholm theory for pseudoholomorphic curves with brake symmetry

Author information +
History +
PDF (386KB)

Abstract

We study the pseudoholomorphic curves with brake symmetry in symplectization of a closed contact manifold. We introduce the pseudo-holomorphic curves with brake symmetry and the corresponding moduli space. Then we get the virtual dimension of the moduli space.

Keywords

Pseudoholomorphic curve / brake symmetry / moduli space / virtual dimension

Cite this article

Download citation ▾
Beijia ZHOU, Chaofeng ZHU. Fredholm theory for pseudoholomorphic curves with brake symmetry. Front. Math. China, 2022, 17(6): 1201-1234 DOI:10.1007/s11464-021-0935-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abikoff W. The Real Analytic Theory of Teichmüller Space. Lecture Notes in Math, Vol 820. Berlin: Springer-Verlag, 1980

[2]

Bourgeois F. A Morse-Bott Approach to Contact Homology. Ph D Thesis. Stanford: Stanford Univ, 2002

[3]

Bourgeois F, Eliashberg Y, Hofer H, Wysocki K, Zehnder E. Compactness results in symplectic field theory. Geom Topol, 2003, 7: 799- 888

[4]

Bourgeois F, Oancea A. An exact sequence for contact and symplectic homology. Invent Math, 2009, 175: 611- 680

[5]

Cappell S E, Lee R, Miller E Y. On the Maslov index. Comm Pure Appl Math, 1994, 47 (2): 121- 186

[6]

Dragnev D. Fredholm theory and transversality for noncompact pseudoholomorphic maps in symplectizations. Comm Pure Appl Math, 2004, 57 (6): 726- 763

[7]

Eliashberg Y, Givental A, Hofer H. Introduction to symplectic field theory. In: Alon N, Bourgain J, Connes A, Gromov M, Milman V, eds. Visions in Mathematics: GAFA 2000 Special Volume, Part II. Modern Birkhäuser Classics. Basel: Birkhäuser, 2010, 560- 673

[8]

Frauenfelder U, Kang J. Real holomorphic curves and invariant global surfaces of section. Proc Lond Math Soc, 2016, 112 (3): 477- 511

[9]

Geiges H. An Introduction to Contact Topology. Cambridge: Cambridge Univ Press, 2008

[10]

Gromov M. Pseudo holomorphic curves in symplectic manifolds. Invent Math, 1985, 82: 307- 347

[11]

Hofer H. Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three. Invent Math, 1993, 114: 515- 563

[12]

Hofer H, Wysocki K, Zehnder E. Properties of pseudo-holomorphic curves in symplectisations. II. Embedding controls and algebraic invariants. In: Eliashberg Y, Milman V, Polterovich L, Schoen R, eds. Geometries in Interaction: GAFA Special Issue in Honor of Mikhail Gromov. Basel: Birkhäuser, 1995, 270- 328

[13]

Hofer H, Wysocki K, Zehnder E. Properties of pseudoholomorphic curves in symplectisations. I: Asymptotics. Ann Inst H Poincaré Anal Non Linéaire, 1996, 13 (3): 337- 379

[14]

Hofer H, Wysocki K, Zehnder E. Properties of pseudoholomorphic curves in symplectisations. III. Fredholm Theory. In: Topics in Nonlinear Analysis. Basel: Birkhäuser, 1999, 381- 475

[15]

Hubbard J H. Teichmüller Theory and Applications to Geometry, Topology, and Dynamics. Ithaca: Matrix Editions, 2016

[16]

Kim J, Kim S, Kwon M. Equivariant wrapped Floer homology and symmetric periodic Reeb orbits. Ergodic Theory Dynam Systems, 2021,

[17]

Liu C, Zhang D. Seifert conjecture in the even convex case. Comm Pure Appl Math, 2014, 67 (10): 1563- 1604

[18]

Long Y. Index Theory for Symplectic Paths with Applications. Progr Math , Vol 207. Basel: Birkhäuser, 2002

[19]

Long Y, Zhang D, Zhu C. Multiple brake orbits in bounded convex symmetric domains. Adv Math, 2006, 203 (2): 568- 635

[20]

McDuff D, Salamon D. J-Holomorphic Curves and Symplectic Topology. 2nd ed. Providence: Amer Math Soc, 2012

[21]

McDuff D, Salamon D. Introduction to Symplectic Topology. 3rd ed. Oxford: Oxford Univ Press, 2017

[22]

Mora E. Pseudoholomorphic Cylinders in Symplectisations. Ph D Thesis. New York: New York Univ, 2003

[23]

Natanzon S. Moduli of real algebraic surfaces, and their superanalogues, differentials, spinors, and Jacobians of real curves Uspekhi Mat Nauk, 1999, 54 (6): 3- 60

[24]

Papadopoulos A, ed . Handbook of Teichmüller Theory, Vol 1. IRMA Lectures in Mathematics and Theoretical Physics, Vol 11. Zürich: European Math Soc, 2007

[25]

Robbin J, Salamon D. The Maslov index for paths. Topology, 1993, 32 (4): 827- 844

[26]

Schwarz M. Cohomology operation from S1-cobordisms in Floer homology. Ph D Thesis. Zürich: ETH–Zürich, 1995

[27]

Seifert H. Periodische bewegungen mechanischer systeme. Math Z, 1948, 51: 197- 216

[28]

Siefring R. Relative asymptotic behavior of pseudoholomorphic half-cylinders. Comm Pure Appl Math, 2008, 61: 1631- 1684

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (386KB)

495

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/