RESEARCH ARTICLE

Measurable n-sensitivity and maximal pattern entropy

  • Ruifeng ZHANG
Expand
  • School of Mathematics, Hefei University of Technology, Hefei 230009, China

Received date: 29 Apr 2021

Accepted date: 07 Jul 2021

Copyright

2022 Higher Education Press

Abstract

We introduce the notion of measurable n-sensitivity for measure preserving systems, and study the relation between measurable n-sensitivity and the maximal pattern entropy. We prove that, if (X, B, µ, T) is ergodic, then (X, B, µ, T) is measurable n-sensitive but not measurable (n+1)-sensitive if and only if hµ*(T) = log n, where hµ* (T) is the maximal pattern entropy of T.

Cite this article

Ruifeng ZHANG . Measurable n-sensitivity and maximal pattern entropy[J]. Frontiers of Mathematics in China, 2022 , 17(6) : 1169 -1180 . DOI: 10.1007/s11464-021-0957-y

1
Abramov L M , Rohlin V A . Entropy of a skew product of mappings with invariant measure. Vestnik Leningrad Univ, 1962, 17 (7): 5- 13 (in Russian)

2
Cadre B , Jacob P . On pairwise sensitivity. J Math Anal Appl, 2005, 309: 375- 382

3
Halmos P , Von Neumann J . Operator methods in classical mechanics. II. Ann of Math, 1942, 43 (2): 332- 350

4
Huang W , Khilko D , Kolyada S , Zhang G H . Dynamical compactness and sensitivity. J Differential Equations, 2016, 260 (9): 6800- 6827

5
Huang W , Kolyada S , Zhang G H . Analogues of Auslander-Yorke theorems for multi-sensitivity. Ergodic Theory Dynam Systems, 2018, 38 (2): 651- 665

6
Huang W , Lu P , Ye X D . Measure-theoretical sensitivity and equicontinuity. Israel J Math, 2011, 183: 233- 283

7
Huang W , Maass A , Ye X D . Sequence entropy pairs and complexity pairs for a measure. Ann Inst Fourier (Grenoble), 2004, 54: 1005- 1028

8
Huang W , Ye X D . Combinatorial lemmas and applications to dynamics. Adv Math, 2009, 220 (6): 1689- 1716

9
James J , Koberda T , Lindsey K , Silva C E , Speh P . Measurable sensitivity. Proc Amer Math Soc, 2008, 136 (10): 3549- 3559

10
Li J . Measure-theoretic sensitivity via finite partitions. Nonlinearity, 2016, 29 (7): 2133- 2144

11
Li J , Tu S M , Ye X D . Mean equicontinuity and mean sensitivity. Ergodic Theory Dynam Systems, 2015, 35 (8): 2587- 2612

12
Li R S , Shi Y M . Stronger forms of sensitivity for measure-preserving maps and semi-flows on probability spaces. Abstr Appl Anal, 2014, 2014: 769523 (10 pp)

13
Liu K R , Zhou X M . Auslander-Yorke type dichotomy theorems for stronger versions of r-sensitivity. Proc Amer Math Soc, 2019, 147 (6): 2609- 2617

14
Moothathu T K S . Stronger forms of sensitivity for dynamical systems. Nonlinearity, 2007, 20 (9): 2115- 2126

15
Shao S , Ye X D , Zhang R F . Sensitivity and regionally proximal relation in minimal systems. Sci China Ser A, 2008, 51 (6): 987- 994

16
Walters P . An Introduction to Ergodic Theory. Berlin: Springer-Verlag, 1982

17
Xiong J C . Chaos in a topologically transitive system. Sci China Ser A, 2005, 48: 929- 939

18
Ye X D , Yu T . Sensitivity, proximal extension and higher order almost automorphy. Trans Amer Math Soc, 2018, 370 (5): 3639- 3662

19
Ye X D , Zhang R F . On sensitive sets in topological dynamics. Nonlinearity, 2008, 21 (7): 1601- 1620

Outlines

/