Frontiers of Mathematics in China >
Nonabelian omni-Lie algebroids
Copyright
In this paper, we study the structure of nonabelian omni-Lie algebroids. Firstly, taking Lie algebroid as the starting point, a nonabelian omni-Lie algebroid is defined on direct sum bundle , where and are, respectively, the gauge Lie algebroid and the jet bundle of vector bundle , and study its properties. Furthermore, it is concluded that the nonabelian omni-Lie algebroid is a trivial deformation of the omni-Lie algebroid, and the nonabelian omni-Lie algebroid is a matched pair of Leibniz algebroids.
Yanhui BI , Hongtao FAN , Danlu CHEN . Nonabelian omni-Lie algebroids[J]. Frontiers of Mathematics in China, 2022 , 17(6) : 1037 -1049 . DOI: 10.1007/s11464-022-1033-y
1 |
Agore A L, Militaru G. Unified products for Leibniz algebras. Linear Algebra Appl 2013; 439(9): 2609–2633
|
2 |
BursztynHCrainic M. Dirac structures, momentum maps, and quasi-Poisson manifolds. In: The Breadth of Symplectic and Poisson Geometry, Progr Math, No 232. Boston, MA: Birkhäuser Boston, 2005, 1−40
|
3 |
Cariñena J F, Grabowski J, Marmo G. Courant algebroid and Lie bialgebroid contractions. J Phys A 2004; 37(19): 5189–5202
|
4 |
Chen Z, Liu Z J. Omni-Lie algebroids. J Geom Phys 2010; 60(5): 799–808
|
5 |
Chen Z, Liu Z J, Sheng Y H. E-Courant algebroids. Int Math Res Not 2010; 22(8): 1163–1185
|
6 |
Chen Z, Liu Z J, Sheng Y H. Dirac structures of omni-Lie algebroids. Internat J Math 2011; 22: 1163–1185
|
7 |
HeL G. Introduction to Symplectic Geometry and Poisson Geometry. Beijing: Capital Normal University Press, 2001, 206−216 (in Chinese)
|
8 |
Ibañez R, Lopez B, Marrero J C.
|
9 |
Kosmann-Schwarzbach Y. Nijenhuis structures on Courant algebroids. Bull Braz Math Soc (N S) 2011; 42(4): 625–649
|
10 |
LangH LSheng Y HXuX M. Nonabelian omni-Lie algebras. In: Geometry of jets and fields, Banach Center Publ, No 110. Warsaw: Polish Acid Sci Inst Math, 2016, 110: 167−176
|
11 |
Liu Z J, Weinstein A, Xu P. Manin triples for Lie bialgebroids. J Differential Geom 1997; 45(3): 547–574
|
12 |
LodayJ L. Une version non commutative des algèbras de Lie: les algèbras de Leibniz. In: Prépubl Inst Rech Math Av, No 41. Strasbourg: Univ Louis Pasteur, 1993, 127−151 (in French)
|
13 |
Nijenhuis A, Richardson R. Deformations of Lie algebra structures. J Math Mech 1967; 17: 89–105
|
14 |
WeinsteinA. Omni-Lie algebras. In: Microlocal Analysis of the Schrödinger Equation and Related Topics. RIMS Kôkyûroku, No 1176. Kyoto: Kyoto University, 2000, 95−102
|
/
〈 | 〉 |