Nonabelian omni-Lie algebroids

Yanhui BI , Hongtao FAN , Danlu CHEN

Front. Math. China ›› 2022, Vol. 17 ›› Issue (6) : 1037 -1049.

PDF (527KB)
Front. Math. China ›› 2022, Vol. 17 ›› Issue (6) : 1037 -1049. DOI: 10.1007/s11464-022-1033-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Nonabelian omni-Lie algebroids

Author information +
History +
PDF (527KB)

Abstract

In this paper, we study the structure of nonabelian omni-Lie algebroids. Firstly, taking Lie algebroid (E,[ ,]E, ρE) as the starting point, a nonabelian omni-Lie algebroid is defined on direct sum bundle D EJE, where D E and JE are, respectively, the gauge Lie algebroid and the jet bundle of vector bundle E, and study its properties. Furthermore, it is concluded that the nonabelian omni-Lie algebroid is a trivial deformation of the omni-Lie algebroid, and the nonabelian omni-Lie algebroid is a matched pair of Leibniz algebroids.

Keywords

Nonabelian omni-Lie algebroid / omni-Lie algebroid / trivial deformation / matched pair of Leibniz algebroids

Cite this article

Download citation ▾
Yanhui BI, Hongtao FAN, Danlu CHEN. Nonabelian omni-Lie algebroids. Front. Math. China, 2022, 17(6): 1037-1049 DOI:10.1007/s11464-022-1033-y

登录浏览全文

4963

注册一个新账户 忘记密码

1 Introduction

In [14], Weinstein introduced the concept of omni-Lie algebra by defining the specific algebraic structure on g l(V) V of vector space V to study the linearization of standard Courant algebroid. Note that Dirac structures of the omni-Lie algebra g l(V) V characterize all Lie algebra structures on V, even if gl(V)V is not a Lie algebra. In [4], Chen and Liu defined the omni-Lie algebroid structure on direct sum bundle DE JE, where DE is the gauge Lie algebroid, JE is the jet bundle of a vector bundle E. If rank(E) 2 (or a line bundle E), then there is a one-to-one correspondence between Lie algebroid structures (or local Lie algebra structures) on E and Dirac structures of omni-Lie algebroid. An omni-Lie algebroid is reduced to an omni-Lie algebra if the base manifold is a point. In [12], Loday introduced the concept of Leibniz algebra, which becomes a Lie algebra when its bracket is skew-symmetric. In [10], Lang, Sheng and Xu introduced the notion of a nonabelian omni-Lie algebra associated to a Lie algebra, which is a trivial deformation of omni-Lie algebra, as well as the double of a matched pair of Leibniz algebras gl(g) and g.

In this paper, with the previous results of omni-Lie algebroids and nonabelian omni-Lie algebras, we run a further study on the nonabelian condition of nonabelian omni-Lie algebroids. Our main research content is nonabelian omni-Lie algebroid structures on the direct sum bundle D EJE, where DE and JE are its gauge Lie algebroid and its jet bundle on the vector bundle E, respectively. We introduce the concept of a nonabelian omni-Lie algebroid from a Lie algebroid, and study its propositions. The nonabelian omni-Lie algebroid is a trivial deformation of an omni-Lie algebroid, and form a matched pair of Leibniz algebroids. The paper is organized as follows. In Section 2, we review some basic concepts and its related knowledges. In Section 3, we introduce the concept of a nonabelian omni-Lie algebroid on the direct sum bundle DE JE, and show its geometric propositions by reconstructing Dorfman bracket {, }π of a nonabelian omni-Lie algebroid. It is proved that the nonabelian omni-Lie algebroid is a trivial deformation of an omni-Lie algebroid. By reviewing the basic concept of a matched pair of Leibniz algebroids, we show that a nonabelian omni-Lie algebroid is a matched pair of Leibniz algebroids. In Section 4, we have a conclusion of the full paper.

2 Preliminary

In this section, firstly, we review some basic concepts.

Definition 2.1 [11] The standard Courant algebroid on M is a quadruple (TMTM,( ,) +,{ ,} ,ρ), where the anchor map ρ is a projection from TMTM to TM, the nondegenerate symmetric pairing is defined by

(X+α ,Y+β )+= iXβ+i Yα, X+α,Y+βX 1(M) Ω 1(M) ,

and {, } is the Dorfman bracket, which is given by

{X+ α,Y+β}= [X,Y ]+L XβiYd α.

Definition 2.2 [10, 14] An omni-Lie algebra associated to a vector space V is a triple (gl(V)V, (, ) +,{, }), for any A,Bgl( V),u ,vV, where

(i) The nondegenerate symmetric pairing (, ) + is given by

(A+u ,B+v)+=Av+Bu;

(ii) The bilinear bracket operation {, } is given by

{A+ u,B+v }=[A,B ]+Av ;

(,)+ and {, } are compatible in the sense that,

({ A+u,B +v} ,C+w)++(B+v ,{A +u,C+ w} )+= A(B+ v,C+w )+.

Definition 2.3 [10] A nonabelian omni-Lie algebra associated to the Lie algebra (g,[, ] g) is a triple (gl(g)g ,(, )+, {, } g), where (,)+ is the symmetric V-valued pairing given by (2.1) and {,} g is the bilinear bracket operation given by

{A+ u,B+v }g= [A,B ]+[A,ad v]+[ ad u,B]a dAv+Av +[u, v]g.

The anchor map ρg:gl(g)g gl (g) is defined by

ρg(A+u)= A+adu.

Proposition 2.1  With the above notations, a nonabelian omni-Lie algebra satisfies the following properties:

(i) (gl(g) g,{ ,}g) is a Leibniz algebra;

(ii) the pairing (,)+ and the bracket{, }g are compatible in the sense that:

({ e1,e2} g,e3)++(e2, {e 1,e3} g )+= ρg(e 1)(e2,e3),

for any e1, e2,e3 g l(g) g.

Next, we review the concept of omni-Lie algebroid. For a vector bundle E, its 1-jet vector bundle JE and its gauge Lie algebroid DE have two corresponding exact sequences. One is given by

0Hom(TM ,E) eJE pE0,

and the other is given by

0gl( E) iDE αTM 0,

which is usually called the Atiyah sequence. Since the gauge Lie algebroid D E has a natural representation on E, the standard Lie algebroid cohomology comes from the complex (Γ(Hom( DE, E)),d), where d:Γ (Hom (nD E,E) ) Γ( Hom( n +1D E,E) ) is the coboundary operator. When n=0, one can check that

du=[u] Γ( JE) Γ( Hom( DE,E)),u Γ(E) .

Moreover, Γ( JE) is an invariant subspace of the Lie derivative Ld, for any dΓ( DE). Here Ld is defined by

L dμ ,d E= dμ ,d E μ,[ d, d]D E,μΓ( JE), dΓ(DE).

Definition 2.4 [4] Let E=D EJE, the quadruple ( E,{, },(, ) E,ρ) is called an omni-Lie algebroid, where ρ is the projection of E onto DE, the Dorfman bracket {, }: Γ( E) ×Γ(E)Γ( E) is given by

{d +μ,r +ν}=[d ,r]D+ LdνL rμ +dμ,r E,

and a nondegenerate, symmetric, E-valued 2-form (, ) E on E is defined by

(d+μ ,r+ν)E=d,ν E+r,μ E.

Comparing with Courant algebroids, an omni-Lie algebroid has some similar properties as follows:

Proposition 2.2 [4]  With the notation above, an omni-Lie algebroid satisfies the following properties:

(i) (Γ(E),{, }) is a Leibniz algebra;

(ii) ρ {X, Y}= [ρ(X), ρ(Y)]D;

(iii) {X,f Y}= f{X ,Y} +(αρ(X)) (f)Y(where α is the projection from DE to TM);

(iv) {X,X }= 12 d(X,X)E;

(v) ρ (X)(Y, Z)E= ({X,Y},Z)E+(Y,{ X,Z})E,

for all X,Y,Z Γ(E),f C(M).

3 Nonabelian omni-Lie algebroids

In this section, on the basis of the omni-Lie algebra be the linearization of the Courant algebroid and the nonabelian omni-Lie algebra be a trivial deformation of the omni-Lie algebra, we will introduce the notion of a nonabelian omni-Lie algebroids and study its algebraic and geometric properties [4,6-7,10,14].

Given a Lie algebroid (E,[, ] E,ρ E), one can construct the bundle map π :JE DE,

π(du)(v )=[u,v]E,

for all u,vΓ(E).

Lemma 3.1 [2]  On the section space Γ (JE), the bracket [, ] π:Γ( JE)× Γ( JE)Γ (JE) is defined by

[μ,ν]π= Lπ(μ)νLπ(ν)μdπ(μ,ν ).

For all μ,νΓ( JE), the bundle map holds:

π[μ,ν ] π=[π(μ) ,π (ν) ] D.

The triple (JE, [, ] π,α π) is a Lie algebroid, where the bundle map α is given by the exact sequence (2.3).

Given a Lie algebroid (E,[, ] E,ρ E), there is a natural E-Lie bialgebroid( DE, JE) [3].

Definition 3.1 With the notation above, the coboundary operator dπ:Hom( nJ E,E) Hom( n+1JE, E) is defined by

(dπΔ)(μ1, μ2,, μn+1) =i=1n+1( 1)i+1π(μ i)(Δ( μ1,,μi^, ,μ n+1)) +i<j(1 )i+jΔ([μi, μj]π, μ1,,μi^, ,μj^, ,μn+1),

for all ΔH om( nJE, E), μ1,μ2, ,μn Γ( JE). We can check that dπ 2 =0.

When n=1, the map dπ: Γ( DE)Hom (2J E,E) is given by

( dπd )( μ1,μ2)=π(μ 1) d,μ2 Eπ( μ2)d,μ1E d ,[μ 1,μ2] π .

where d Γ(DE),μ1, μ2Γ (JE).

The contraction operator iμ is defined by:

iμd=d,μ E.

Where μ Γ(JE), dΓ( DE).

Definition 3.2 The Lie derivative L μπ:Hom( nJE, E)Hom(nJ E,E) is defined by

( LμπΔ)(μ1, ,μn)=π(μ)(Δ( μ1,, μn)) i=1nΔ(μ1, ,[μ ,μ i] π ,,μ n).

Where ΔHom(nJE,E),μ, μ1,μ2, ,μn Γ( JE).

Proposition 3.1 For all μ,νΓ (JE), the contraction operator iμ and the Lie derivative Lμπ have the following properties:

(i) i [μ,ν]π=L μπ iν iν Lμ π;

(ii) L [μ,ν]ππ=L μπ LνπL νπ Lμπ;

(iii) L μπ=i μdπ+dπ iμ;

(iv) L μπ dπ= dπ Lμ π.

Proof For all Δ Hom(nJ E,E) ,μ,ν,μ1,μ 2,,μn Γ( JE),

(i) According to Lemma 3.1 and equations (3.4) and (3.5), it can be obtained

(L μπi ν Δ) (μ1, ,μn1)=π(μ)(i ν Δ( μ1,, μn1)) i=1n 1i ν Δ( μ1,,[μ,μi]π, ,μn1) =π (μ)(Δ(ν,μ1, ,μn1)) i=1n1Δ(ν,μ1,,[μ,μ i ]π,, μn 1).

Similarly, it can be calculated

(i ν Lμ π Δ) (μ1, ,μn1)=L μπΔ(ν,μ1,,μ n1)= π(μ) (Δ (ν, μ1,,μ n1))Δ([μ,ν]π,μ1, ,μn1) i=1n 1Δ (ν, μ1,,[μ,μ i ]π,, μn 1);

then

(( Lμπ iν iνL μπ)Δ)(μ1,,μ n1)= i[μ,ν]πΔ (μ1, ,μn1).

(ii) We first calculate the left-hand side of the equation, then we can get

( L[μ,ν]ππΔ)(μ1,,μ n) =π([μ,ν]π)(Δ(μ1,, μn))i= 1nΔ(μ1, ,[[μ,ν ] π,μ i ]π,, μn).

Similarly, we can calculate the right-hand side of the equation,

(( Lμπ LνπL νπ Lμπ)Δ)(μ1,, μn) =π (μ)(( LνπΔ)(μ1, ,μn)) π(ν) (( LμπΔ)(μ1,,μ n)) i=1n( Lν π Δ) (μ1, ,[μ ,μ i] π ,,μ n)+i=1n( LμπΔ)(μ1, ,[ν ,μ i] π ,,μ n) =([π(μ),π(ν)]DΔ)(μ1, ,μn)+i=1nΔ( μ1,,[ν,[μ,μi]π ]π,, μn) i=1nΔ(μ1, ,[μ ,[ν,μi] π ] π,,μn),

and it can be proved that [, ] π satisfies Jacobi identity and identity (3.2).

(iii) By identity (3.3), we can get

( iμ dπΔ+dπ iμΔ)(μ1, ,μn) =( dπΔ)(μ ,μ 1,,μn)+ i=1n(1)i1π(μ i)(i μ Δ( μ1,, μ^i, ,μn)) +i<j( 1)i+j(i μ Δ) ([ μi,μj]π,μ1, , μ^i,,μ^j,, μn) =π (μ)(Δ( μ1,, μn)) + i=1n( 1)iπ( μi)( Δ( μ,μ1, , μ^i,,μ n)) +i<j( 1)i+jΔ([μi,μj]π,μ, μ1,,μ^i,, μ^j, ,μn) +i=1n(1 )iΔ ([μ,μi]π,μ1, , μ^i,,μ n) +i=1n(1 )i1 π(μi)(Δ(μ,μ1, , μ^i,,μ n)) +i<j( 1)i+jΔ(μ,[μi, μj]π, μ1,, μ^i, , μ^j,,μ n) =( Lμ π Δ) (μ1, ,μn).

(iv) By dπ2= 0, we can get

Lμπ dπ= iμdπ 2 +dπ iμdπ=dπ(i μdπ+dπ iμ)= dπL μπ.

Definition 3.3 The nonabelian omni-Lie algebroid associated to a Lie algebroid ( JE,[ ,]π,π) is a quadruple (DE JE,{,} π,(,)E,ρπ), where the nondegenerate symmetric E-valued pair (, ) E is identity (2.5), the Dorfman bracket {, } π is defined by

{d +μ,r +ν}π=[d ,r]D+ Lμπri ν dπd+L dν i rdμ+[μ, ν]π,

and the anchor map ρπ:DE JED E is defined by

ρπ(d +μ)=d+π(μ),

for all d,rΓ( DE), μ,νΓ( JE).

Comparing with an omni-Lie algebroid, we will show that a nonabelian omni-Lie algebroid has some similar properties as follows.

Theorem 3.1  With the notation above, a nonabelian omni-Lie algebroid satisfies the following properties:

(i) (Γ(DE JE), {, } π ) is a Leibniz algebra;

(ii) ρπ{X ,Y}π=[ρπ(X),ρ π (Y)]D;

(iii) {X,f Y} π =f{ X,Y}π+(αρπ(X) )(f)Y(where α is the projection from DE to TM);

(iv) {X,X }π= 12(d+ dπ)(X,X)E;

(v) ρπ(X)(Y ,Z) E=({X,Y }π, Z)E+ (Y,{X, Z} π ) E,

where X,Y,ZΓ( DE JE),f C(M).

Proof (i) It can be obtained through the direct calculation.

(ii) For all d,rΓ( DE), μ,νΓ( JE), by equations (3.6) and (3.7), we have

ρ π {d +μ,r +ν}π= ρπ([d,r] D+L μπr iνdπd +L dν i rdμ+[ μ,ν]π) =[d,r] D+L μπr iνdπd +π (L dν i rdμ+[ μ,ν]π).

Next, we can calculate the right-hand side of the equation. It can be obtained

[ρ π( d+μ) ,,ρπ(r+ν )] D =[d +π (μ) ,r+π(ν)]D=[d,r ] D+L dπ(ν) L r π(μ) +[π (μ),π(ν)]D.

Since

L dπ(ν)=(L dπ)(ν)+π(L dν )=[d,π]D(ν)+π(L dν );L rπ(μ)= ( Lrπ )(μ) π(L rμ)=[r,π]D(μ)π (L rμ );L μπr=i μdπr+ dπ iμr=[π,r] D(μ) π(d(μ, r)E); iν dπd=[d,π ] D(ν ); π(i rdμ)= π((dμ)(r )),

we have

ρπ{d +μ,r +ν}π[ ρπ(d +μ),ρ π( r+ν) ] D=π [μ,ν] π [π (μ),π(ν)]D.

Since π[μ,ν]π=[π(μ),π(ν)] D, we can get ρπ{d +μ,r +ν}π=[ ρπ(d +μ),ρ π( r+ν) ] D.

(iii) For all d,rΓ( DE), μ,νΓ( JE), fC(M), we have

{d+μ ,f(r +ν) }π =[ d,f r]D+L μπfri fνdπd +L dfν ifrdμ+[μ, fν] π= f[d ,r]D+ (α d)( f)r +f Lμπr+(α π)(μ)(f) rfi ν dπd+f Ldν+(αd )(f)ν f iνdμ+f[μ,ν ] π+(απ (μ))(f) ν=f( [d,r ] D+L μπr i νdπd+ Ldν i ν dμ +[μ,ν] π ) +((α d) (f)r+(απ(μ))(f) r +( α d)(f)ν+(α π(μ) )(f)ν) =f{(d +μ),( r+ν )}π+((α d)+(α π(μ) ))(f) (r+ν ) =f{(d +μ),( r+ν )}π+(αρπ)(d +μ)(f) (r+ν ).

(iv) According to Definition 3.3, it can be obtained

{d+μ ,d+μ} π=[ d,d ] D+L μπd i μdπd+ Ldμ i ddμ+[μ, μ]π= Lμπdi μ dπd+L dμ i ddμ= dπi μ d+di dμ.

From formula (2.5), we can get {d +μ,d +μ}π=12( d+ dπ)(d+μ,d +μ) E.

(v) For all d1, d2, d3Γ (DE),μ1, μ2,μ3 Γ( JE), we have

({d 1+μ1,d 2+μ2}π,d 3+μ 3 )E =([d 1,d 2 ]D+L μ1 π d2i μ2dπd +L d1μ2 id 2dμ 1+[μ 1,μ2] π ,d 3+μ 3 )E = [ d1, d2]D+ Lμ 1πd 2i μ2dπ d1,μ3 E+d 3,L d1μ2i d2dμ 1+[μ 1,μ2] π E.

Similarly, it can be obtained by calculation

( d2+μ2, {d 1+μ1,d 3+μ3}π)E =d 2,L d1μ3 id 3dμ 1+[μ 1,μ3] π E+ [d 1,d 3 ]D+L μ1 π d3i μ3dπ d1,μ2 E.

By straight calculation, we can get

[d 1,d 2] D, μ3 E+d 2,L d1μ3 E=d 1,d 2,μ 3 E E; d3, Ld 1μ 2 E+ [d 1,d 3 ]D,μ2 E=d 1,d 3,μ 2 E E; i μ2dπd 1,μ 3 E+ iμ 3dπ dπd 1,μ 2 E= 0; d 3, id 2dμ1E+ d2,i d3dμ 1 E= 0; L μ1 π d2,μ3 E+d 2,[μ1,μ 3 ]πE=π(μ1),d 2,μ 3 E E; d3,[ μ1,μ2]π E+ Lμ 1πd 3,μ 2 E= π (μ 1),μ2, d3 E E.

Therefore, it can be proved that

ρ π ( d1+ μ1)(d 2+μ 2,d 3+μ 3 )E= ({d 1+μ 1,d 2+μ 2 }π, d3+μ3)E+(d 2+μ 2,{d 1+μ1,d 3+μ3}π)E.

Next, we will explain that the nonabelian omni-Lie algebroid can be regarded as a trivial deformation of the omni-Lie algebroid.

Definition 3.4 [9] Let (L,{, }L, ρL) be a Leibniz algebroid, N be a bundle mapping of Leibniz algebroid L, which is defined by

{e 1,e2} N={N e1,e2} L+{e1, Ne2} LN{e1, e2} L,

and

TN(e1, e2)={ N e1,N e2} L N{e1, e2} N.

If T N=0, i.e. N{e1, e2} N={N e1,N e2} L, then N is called a Nijenhuis operator.

Let {, }λ be a bilinear operator, and ω be a bilinear map from L L to L. Consider a λ-parametrized family of bilinear operations

{e 1,e2}λ={ e1,e2} L+λω(e 1,e2).

When all the brackets {, } λ endow L with Leibniz algebras, a deformation of the Leibniz algebra is generated by ω. If there exists a linear operator N :LL such that for Tλ=id+λN there holds

Tλ{ e1,e2} λ={Tλ e1,Tλ e2}L.

Here the deformation ω(e 1,e2) {e 1,e2} N is said to be trivial.

Let N be a Nijenhuis operator on the Leibniz algebra. Then N {e 1,e2} N={N e1,N e2} L. The Nijenhuis operator can give a obvious trivial deformation of the Leibniz algebroid [5, 13].

Proposition 3.2 [9]  Let N be a Nijenhuis operator on the Leibniz algebroid (L,{, }L, ρL), then we have

(i) (L,{, }N,ρN) is a Leibniz algebra (where ρN= ρL N);

(ii) (L,{, }L+ {, } N,ρL+ ρN) is a Leibniz algebroid;

(iii) For ( L,{ ,}N, ρN) and (L,{, }L, ρL), N is a morphism of Leibniz algebroids from (L,{, }N,ρN) to (L,{, }L, ρL).

( JE,[ ,]π,α π) is a Lie algebroid, and the bundle map N:D EJEDE JE is defined by

N( d+μ) =π (μ) dΓ(DE),μ Γ( JE),

where the bundle map α is given by the exact sequence (2.3).

Theorem 3.2  The nonabelian omni-Lie algebroid ( DEJ E,{ ,}π,(,)E,ρπ) is a trivial deformation of the omni-Lie algebroid ( DEJ E,{ ,},( ,)E,ρ).

Proof According to Definition 3.4 and formula (3.8), we have

{d+μ,r +ν}N ={π(μ), r+ν }+{ d+μ ,π (ν) } π(L dν L rμ+dμ,r E) =[π(μ),r ] D+L π(μ)ν+[ d, π(ν) ] DL π(ν)μ+dμ,π(ν)Eπ (L dν L rμ+dμ ,r E) =([π(μ), r]D+[d ,π (ν) ] Dπ (L dν L rμ+dμ ,r E)) +(L π(μ)νL π(ν)μ+dμ ,π (ν) E),

for all d,rΓ( DE), μ,νΓ( JE), and then

N{d+μ ,r+ν} N= π(L π(μ)νL π(ν)μ+dμ,π(ν)E).

According to formula (3.1), we have Lπ (μ)νL π(ν)μ+dμ ,π (ν) E= [μ,ν]π. Therefore N{d+μ ,r+ν} N= π([μ ,ν] π ).

According to formula (3.2), we get

π([μ ,ν] π )=[π(μ) ,π (ν) ] D,

and we have N{d+μ ,r+ν} N= {N( d+μ) ,N(r+ν )}. Now we have shown that N is a Nijenhuis operator.

By formula (2.4) and Definition 3.4, we have

{d+μ,r +ν}+{ d+μ,r +ν}N =[d,r ] D+L dν L rμ+dμ ,r E+([ π(μ) ,r]D+ [d,π(ν)] D π(L dν L rμ+dμ ,r E))+ ( Lπ(μ)νL π(ν)μ+dμ ,π (ν) E).

By calculation, we have

[ π(μ) ,r]D+ π(L rμdμ ,r E) =L rπ(μ)+π( L rμdμ,r E) =(L rπ)(μ)π (L rμ )+π (L rμ dμ,r E) =[π ,r]D(μ) π(dμ ,r E)= iμdπr +dπ iμr=L μπr .

Similarly, it can be obtained by calculation

[d,π(ν)]π(L dν )= iνdπd .

Since

Lπ (μ)νL π(ν)μ+dμ ,π (ν) E= [μ,ν]π.

it can be obtained:

{d +μ,r +ν}π={d+μ,r +ν}+{ d+μ,r +ν}N.

Remark 3.1 In special, we have shown that ( DEJ E,{ ,}π,ρπ) is a Leibniz algebroid.

Lemma 3.2 [4]  Let ( JE,[ ,]π,α π) be the Lie algebroid. The following statements are equivalent:

(i) α πd:Γ(E) X (M) induces a bundle map ETM;

(ii) α πe=0;

(iii) Hom(T M,E) is an ideal of JE;

(iv) there is a reduced Lie algebroid structure on EJE/Im( e) given by:

ρE=α π d, [u ,v] E=p[du, dv] π =π(du)v , u,vΓ(E).

where the bundle map p is given by the exact sequence (2.2).

Lemma 3.3 [4, 6]  Given a Lie algebroid (E,[ ,] E,ρ E), π (du)=[ u,]E can construct a nonabelian omni-Lie algebroid ( DE JE, {, } π ,(, )E, ρπ), here uΓ (E).

Theorem 3.3  If rank( E)2, then there is a one-to-one correspondence between Lie algebroid structures on E and the nonabelian omni-Lie algebroids.

Proof Let ( JE,[ ,]π,α π) be a Lie algebroid, where π: DEJ E is a bundle map. According to [4], one can define the nonabelian omni-Lie algebroid. When rank(E) 2, it can be obtained a Lie algebroid on E by Lemma 3.2.

Obviously, the opposite direction holds true with the previous narration and Lemma 3.3.□

Example 3.1 Given a Lie algebroid (E,[ ,], ρ), rank(E )2, there is a nonabelian omni-Lie algebroid DE JE, for a bundle map N:EE, the Nijenhuis torsion of N is defined by

TN(u,v):= N[u, v]N [Nu, Nv],

where [u,v ] N=[Nu,v]+[ u,Nv]N[u,v ], for all u,vΓ(E). We define a twisted bundle map π N^adNπ:JE DE, where N^ is the lift of N, a twisted bundle map is given by

N^:J EJ E,[u ][Nu].

π N^adNπ=πN, the following statements are equivalent:

(i) a quadruple (DE JE,{,} πN,(,)E,ρπN) is a nonabelian omni-Lie algebroid;

(ii) (E,[, ] N,ρN) is a Lie algebroid;

(iii) [TN(u,v ),w]+TN([u ,v], w)+c .p.=0 , u,v,w Γ(E).

The nonabelian omni-Lie algebroid DE JE can be regarded as a matched pair of Leibniz algebroids DE and J E, which will be explained (refer to [8]).

Definition 3.5  ( L,[ ,] L, ρ1),(M,[, ] M,ρ 2) are Leibniz algebroids, if the direct sum bundle LM has a Leibniz algebroid structure (LM ,[, ]LM,ρ), and L,M are Leibniz subalgebroids of LM, then ( L,M) is a matched pair of Leibniz algebroids L and M.

Under the identification Γ( LM) Γ(L) Γ(M), Definition 3.5 implies that ρ(g,y )=ρ 1(g) +ρ 2(y), [g,h] L M=[ g,h] L, and that [x,y] L M=[ x,y] M, for all g,hΓ( L),x,yΓ( M).

π1 represents the projection from Γ( LM) Γ(L) Γ(M) to Γ( L), π2 represents the projection from Γ( LM) Γ(L) Γ(M) to Γ( M), they induce the following linear mappings respectively:

ρ2 L :Γ(L) ×Γ(M) Γ (M) ; ρ2R:Γ (M) ×Γ(L) Γ (M) ; ρ1L:Γ (M) ×Γ(L) Γ (L) ; ρ1R:Γ (L) ×Γ(M) Γ (L) ,

where

ρ2 L (x,h )=Π2[x ,h] LM,ρ2R(h,x )=Π2[h ,x] LM; ρ 1L(g,y)= Π1[g,y ] LM, ρ1R(y,g)= Π1[y,g ] LM.

Proposition 3.3 [1]  If ( L,M) is a matched pair of Leibniz algebroids (L,[, ] L,ρ L) and (M,[, ] M,ρ M), then there are Leibniz algebra representation ( ρ1L,ρ1R) of Leibniz algebroid L on M and Leibniz algebra representation ( ρ2L,ρ2R) of Leibniz algebroid M on L, for all g,hΓ( L),x ,yΓ(M ), they satisfy the following compatibility conditions:

(i) ρ1(ρ 2R(y) g)+ ρ2(ρ1 L (g)y)= [ρ1(g) ,ρ 2(y)];

(ii) ρ2(ρ 1R(h) x)+ ρ1(ρ2 L (x)h)= [ρ2(x) ,ρ 1(h)];

(iii) ρ1 L (g)[x, y]M= [ρ1L(g) x,y] M+[x, ρ1L(g)y] M+ρ 1L(ρ2 R (x)g)y +ρ1R(ρ2R(y) g)x;

(iv) ρ1 R (g)[x, y]M= [x, ρ1R(g)y] M[y,ρ 1R(g)x] M+ρ 1R(ρ2 L (y)g)x ρ1R(ρ2L(x) g)y;

(v) [ρ1L(g) x,y] M+ρ 1L(ρ2 R (x)g)y +[ρ 1R(g) x,y] M+ρ 1L(ρ2 L (x)g)y =0;

(vi) ρ2 L (x)[g, h]L= [ρ2L(x) g,h] L+[g, ρ2L(x)h] L+ρ 2L(ρ1 R (g)x)h +ρ2R(ρ1R(h) x)g;

(vii) ρ2 R (x)[g, h]L= [g, ρ2R(x)h] L[h,ρ 2R(x)g] L+ρ 2R(ρ1 L (h)x)g ρ2R(ρ1L(g) x)h;

(viii) [ρ2L(x) g,h] L+ρ 2L(ρ1 R (g)x)h +[ρ 2R(x) g,h] L+ρ 2L(ρ1 L (g)x)h =0.

( L,M) is a matched pair of Leibniz algebroids, there is a Leibniz algebroid structure LM on the direct sum vector bundle LM, the Leibniz bracket is given by:

[g+x ,h+y]L M= [g,h ] L+ρ 2R(y) g+ρ2L(x) h+[x ,y] M+ ρ1L(g)y+ρ1 R (h)x.

Through a series of calculations, we get the following proposition.

Proposition 3.4  A nonabelian omni-Lie algebroid ( DE JE, {, } π ,ρ π) constructs a matched pair of Leibniz algebroids (DE, [, ] D,α) and (JE, [, ] π,α π).

Proof By Theorem 3.1, DE JE is a Leibniz algebroids, and DE, J E are Leibniz subalgebroids. According to the definition of a matched pair, this proposition can be proved.□

4 Conclusion

In this paper, we study a nonabelian omni-Lie algebroid on the basis of previous researches. We have given the definition of nonabelian omni-Lie algebroid with Dorfman bracket {, } π, and show its related properties. It is proved that a nonabelian omni-Lie algebroid DE JE can be regarded as a matched pair of Leibniz algebroids DE and J E. In the future, we can continue our research on the algebraic and geometric structures of higher nonabelian omni-Lie algebroids.

References

[1]

Agore A L, Militaru G. Unified products for Leibniz algebras. Linear Algebra Appl 2013; 439(9): 2609–2633

[2]

BursztynHCrainic M. Dirac structures, momentum maps, and quasi-Poisson manifolds. In: The Breadth of Symplectic and Poisson Geometry, Progr Math, No 232. Boston, MA: Birkhäuser Boston, 2005, 1−40

[3]

Cariñena J F, Grabowski J, Marmo G. Courant algebroid and Lie bialgebroid contractions. J Phys A 2004; 37(19): 5189–5202

[4]

Chen Z, Liu Z J. Omni-Lie algebroids. J Geom Phys 2010; 60(5): 799–808

[5]

Chen Z, Liu Z J, Sheng Y H. E-Courant algebroids. Int Math Res Not 2010; 22(8): 1163–1185

[6]

Chen Z, Liu Z J, Sheng Y H. Dirac structures of omni-Lie algebroids. Internat J Math 2011; 22: 1163–1185

[7]

HeL G. Introduction to Symplectic Geometry and Poisson Geometry. Beijing: Capital Normal University Press, 2001, 206−216 (in Chinese)

[8]

Ibañez R, Lopez B, Marrero J C. . Matched pairs of Leibniz algebroids, Nambu-Jacobi structures and modular class. C R Acad Sci Paris Sér I Math 2001; 333(9): 861–866

[9]

Kosmann-Schwarzbach Y. Nijenhuis structures on Courant algebroids. Bull Braz Math Soc (N S) 2011; 42(4): 625–649

[10]

LangH LSheng Y HXuX M. Nonabelian omni-Lie algebras. In: Geometry of jets and fields, Banach Center Publ, No 110. Warsaw: Polish Acid Sci Inst Math, 2016, 110: 167−176

[11]

Liu Z J, Weinstein A, Xu P. Manin triples for Lie bialgebroids. J Differential Geom 1997; 45(3): 547–574

[12]

LodayJ L. Une version non commutative des algèbras de Lie: les algèbras de Leibniz. In: Prépubl Inst Rech Math Av, No 41. Strasbourg: Univ Louis Pasteur, 1993, 127−151 (in French)

[13]

Nijenhuis A, Richardson R. Deformations of Lie algebra structures. J Math Mech 1967; 17: 89–105

[14]

WeinsteinA. Omni-Lie algebras. In: Microlocal Analysis of the Schrödinger Equation and Related Topics. RIMS Kôkyûroku, No 1176. Kyoto: Kyoto University, 2000, 95−102

RIGHTS & PERMISSIONS

Higher Education Press 2022

AI Summary AI Mindmap
PDF (527KB)

666

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/