Nonabelian omni-Lie algebroids

Yanhui BI, Hongtao FAN, Danlu CHEN

PDF(527 KB)
PDF(527 KB)
Front. Math. China ›› 2022, Vol. 17 ›› Issue (6) : 1037-1049. DOI: 10.1007/s11464-022-1033-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Nonabelian omni-Lie algebroids

Author information +
History +

Abstract

In this paper, we study the structure of nonabelian omni-Lie algebroids. Firstly, taking Lie algebroid (E,[ ,]E, ρE) as the starting point, a nonabelian omni-Lie algebroid is defined on direct sum bundle D EJE, where D E and JE are, respectively, the gauge Lie algebroid and the jet bundle of vector bundle E, and study its properties. Furthermore, it is concluded that the nonabelian omni-Lie algebroid is a trivial deformation of the omni-Lie algebroid, and the nonabelian omni-Lie algebroid is a matched pair of Leibniz algebroids.

Keywords

Nonabelian omni-Lie algebroid / omni-Lie algebroid / trivial deformation / matched pair of Leibniz algebroids

Cite this article

Download citation ▾
Yanhui BI, Hongtao FAN, Danlu CHEN. Nonabelian omni-Lie algebroids. Front. Math. China, 2022, 17(6): 1037‒1049 https://doi.org/10.1007/s11464-022-1033-y

References

[1]
Agore A L, Militaru G. Unified products for Leibniz algebras. Linear Algebra Appl 2013; 439(9): 2609–2633
[2]
BursztynHCrainic M. Dirac structures, momentum maps, and quasi-Poisson manifolds. In: The Breadth of Symplectic and Poisson Geometry, Progr Math, No 232. Boston, MA: Birkhäuser Boston, 2005, 1−40
[3]
Cariñena J F, Grabowski J, Marmo G. Courant algebroid and Lie bialgebroid contractions. J Phys A 2004; 37(19): 5189–5202
[4]
Chen Z, Liu Z J. Omni-Lie algebroids. J Geom Phys 2010; 60(5): 799–808
[5]
Chen Z, Liu Z J, Sheng Y H. E-Courant algebroids. Int Math Res Not 2010; 22(8): 1163–1185
[6]
Chen Z, Liu Z J, Sheng Y H. Dirac structures of omni-Lie algebroids. Internat J Math 2011; 22: 1163–1185
[7]
HeL G. Introduction to Symplectic Geometry and Poisson Geometry. Beijing: Capital Normal University Press, 2001, 206−216 (in Chinese)
[8]
Ibañez R, Lopez B, Marrero J C. . Matched pairs of Leibniz algebroids, Nambu-Jacobi structures and modular class. C R Acad Sci Paris Sér I Math 2001; 333(9): 861–866
[9]
Kosmann-Schwarzbach Y. Nijenhuis structures on Courant algebroids. Bull Braz Math Soc (N S) 2011; 42(4): 625–649
[10]
LangH LSheng Y HXuX M. Nonabelian omni-Lie algebras. In: Geometry of jets and fields, Banach Center Publ, No 110. Warsaw: Polish Acid Sci Inst Math, 2016, 110: 167−176
[11]
Liu Z J, Weinstein A, Xu P. Manin triples for Lie bialgebroids. J Differential Geom 1997; 45(3): 547–574
[12]
LodayJ L. Une version non commutative des algèbras de Lie: les algèbras de Leibniz. In: Prépubl Inst Rech Math Av, No 41. Strasbourg: Univ Louis Pasteur, 1993, 127−151 (in French)
[13]
Nijenhuis A, Richardson R. Deformations of Lie algebra structures. J Math Mech 1967; 17: 89–105
[14]
WeinsteinA. Omni-Lie algebras. In: Microlocal Analysis of the Schrödinger Equation and Related Topics. RIMS Kôkyûroku, No 1176. Kyoto: Kyoto University, 2000, 95−102

Acknowlegements

The research was supported by the National Natural Science Foundation of China (Grant Nos. 11961049, 11601219).

RIGHTS & PERMISSIONS

2022 Higher Education Press 2022
AI Summary AI Mindmap
PDF(527 KB)

Accesses

Citations

Detail

Sections
Recommended

/