Frontiers of Mathematics in China >
Chung’s functional law of the iterated logarithm for the Brownian sheet
Copyright
In this paper, we investigate functional limit problem for path of a Brownian sheet, Chung's functional law of the iterated logarithm for a Brownian sheet is obtained. The main tool in the proof is large deviation and small deviation for a Brownian sheet.
Yonghong LIU , Ting ZHANG , Yiheng TANG . Chung’s functional law of the iterated logarithm for the Brownian sheet[J]. Frontiers of Mathematics in China, 2022 , 17(6) : 1015 -1024 . DOI: 10.1007/s11464-022-1030-1
1 |
ChenB. On Strassen’s version of the law of the iterated logarithm for the two-parameter Wiener process. In: Asymptotic Methods in Probability and Statistics (Otawa, OW, 1997), Amsterdam: North-Holland, 1998, 343–358
|
2 |
Gao F, Wang Q. The rate of convergence in the functional limit theorem for increments of a Brownian motion. Statist Probab Lett 2005; 73(2): 165–177
|
3 |
Kuelbs J, Li W V. Small ball estimates for Brownian motion and the Brownian sheet. J Theoret Probab 1993; 6(3): 547–577
|
4 |
Lucas A. Fractales aléatoires de type Chung pour les accroissements du processus de Wiener. C R Acad Sci Paris Sér I 1998; 326(9): 1123–1126
|
5 |
Monrad D, Rootzén H. Small values of Gaussian processes and functional laws of the iterated logarithm. Probab Theory Related Fields 1995; 101(2): 173–192
|
6 |
Talagrand M. The small ball problem for the Brownian sheet. Ann Probab 1994; 22(3): 1331–1354
|
7 |
Wang W. On Strassen-type theorem for the increments of two-parameter Wiener processes. Chinese Ann Math Ser A 2001; 22(1): 27–34
|
8 |
Xu J. Quasi sure functional modulus of continuity for a two-parameter Wiener process in Hölder norm. J Math Anal Appl 2016; 434: 501–515
|
9 |
Xu J, Miao Y, Liu J. Quasi sure functional limit theorem for increments of a fractional Brownian sheet in Hölder norm. Comm Statist Theory Methods 2016; 45(5): 1564–1574
|
/
〈 | 〉 |