Chung’s functional law of the iterated logarithm for the Brownian sheet

Yonghong LIU , Ting ZHANG , Yiheng TANG

Front. Math. China ›› 2022, Vol. 17 ›› Issue (6) : 1015 -1024.

PDF (384KB)
Front. Math. China ›› 2022, Vol. 17 ›› Issue (6) : 1015 -1024. DOI: 10.1007/s11464-022-1030-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Chung’s functional law of the iterated logarithm for the Brownian sheet

Author information +
History +
PDF (384KB)

Abstract

In this paper, we investigate functional limit problem for path of a Brownian sheet, Chung's functional law of the iterated logarithm for a Brownian sheet is obtained. The main tool in the proof is large deviation and small deviation for a Brownian sheet.

Keywords

Brownian sheet / Chung's functional law of the iterated logarithm

Cite this article

Download citation ▾
Yonghong LIU, Ting ZHANG, Yiheng TANG. Chung’s functional law of the iterated logarithm for the Brownian sheet. Front. Math. China, 2022, 17(6): 1015-1024 DOI:10.1007/s11464-022-1030-1

登录浏览全文

4963

注册一个新账户 忘记密码

1 Introduction and main results

The functional limit theorems for Brownian motion and Brownian sheet have been investigated by some scholars. Gao and Wang [2] studied the rate of convergence in the functional limit theorem for increments of a Brownian motion. Lucas [4] obtained Chung's type modulus of continuity for Brownian motion. Chen [1] studied Strassen's the law of the iterated logarithm for the two-parameter Wiener processes. Xu [8] studied quasi sure functional modulus of continuity for a two-parameter Wiener process in Hölder norm, and partial results of [8, Theorem 3.1] were generalized to case of fractional Brownian sheet [9, Theorem 1.2]. The study for Chung's limit theorems of Brownian sheet is complicated, and the result is a fewer. In the existing results, Talagrand obtained Chung's law of the iterated logarithm [6, Theorem 1.3], and Kuelbs and Li [3, Theorem 5.1] obtained Chung's functional law of the iterated logarithm for Brownian sheet in Hölder norm, but these results are rough. In this paper, Chung's law of the iterated logarithm for Brownian sheet is further studied, the more exact Chung's type law of iterated logarithm is obtained.

In this paper, let {w(s,t);s0,t0} be Brownian sheet, C={f;f:[0,1]2R,farecontinuous}, endowed with the uniform norm f:=sup(s,t)[0,1]2|f(s,t)|. Denote C0:={fC;f(0,t)=f(s,0)=0}, H={fC0;fareabsolutelycontinuous,fH2=0101|2fyx|2dxdy<+}, define a function I:C0[0,] by

I(z)={zH22,ifzH,,otherwise.

Denote K={fH;I(f)1}. We define L2u=loglogu,L3u=logloglogu.

The following theorems are main results of this paper.

Theorem 1.1  For any fK with I(f)<1, we have

lim infu(L2u)(L3u)3/2w(u,u)u2(L2u)(L3u)3f(,)18C(1I(f)),a.s.,

lim infuL2u(L3u)3/2w(u,u)u2(L2u)f(,)18C(1I(f)),a.s.

Theorem 1.2 (1) Let a positive constant b<1. For any fK with I(f)<1, we have

lim infu(L2u)b(L3u)3/2w(u,u)u2(L2u)b(L3u)3f(,)b3C8(1I(f)),a.s.

(2) For any fK with I(f)<1, we have

lim infuL2u(L3u)3/2w(u,u)u2(L2u)f(,)C8(1I(f)),a.s.

Where C is a positive constant in Theorem 1.1 of [6].

Remark 1.1 In Theorem 1.1 and Theorem 1.2, if f=0, then

18Clim infu(L2u)1/2u(L3u)3/2w(u,u)C8,a.s.

In this case, Theorem 1.3 in [6] can be seen as the corollary of (1.5).

2 Proofs of main results

In this section, Theorem 1.1 is proved by small deviations, Theorem 1.2 is proved by large deviations and small deviations.

2.1 Proof of Theorem 1.1

Our proofs are based on the following lemmas.

Lemma 2.1  Let fH, f(,)=f(λ,λ), λ,λ<1. Then we have

ff{((1λ)(1λ))1/2+(1λ)1/2+(1λ)1/2}fH.

Proof Let f(s,t)=0s0tg(u,v)dudv,0s,t1 and fH2=0101g2(u,v)dudv. We have

f(,)f(,)=sups,t[0,1]2|f(s,t)f(λs,λt)|=sups,t[0,1]2|0s0tg(u,v)dudv0λs0λtg(u,v)dudv|=sups,t[0,1]2|λssλttg(u,v)dudv+λss0λtg(u,v)dudv+0λsλttg(u,v)dudv|{((1λ)(1λ))1/2+(1λ)1/2+(1λ)1/2}fH.

Lemma 2.1 is proved.

Lemma 2.2  For fK with I(f)<1, there exists a un=exp(n(logn)3), such that

lim infnL2un(L3un)3/2w(un,un)un2(L2un)(L3un)3f18C(1I(f)),a.s.

Proof Let fK with I(f)<1, and choose δ>0, such that η0:=I(f)+1I(f)1εδ>1. We have

P((L2un)(L3un)3/2w(un,un)un2(L2un)(L3un)3f1ε8C(1I(f)))=P(w(,)(L2un)1/2(L3un)3/2f1ε(L2un)1/218C(1I(f))).

By Proposition 4.2 in [5], for δ>0, n large enough, we have

(L2un)1(L3un)3logP(w(,)(L2un)1/2(L3un)3/2f(1ε)(L2un)1/28C(1I(f)))(L2un)1(L3un)3logP(w(,)1ε(L2un)1/218C(1I(f)))I(f)+δ.

By Theorem 1.1 in [6],

logP(w(,)1ε(L2un)1/218C(1I(f)))1C8C(1I(f))L2un(1ε)2(log8C(1I(f))1ε+12L3un)3,

thus

(L2un)1(L3un)3logP(w(,)1ε(L2un)1/218C(1I(f)))1I(f)1ε,

which implies

(L2un)1(L3un)3logP(w(,)(L2un)1/2(L3un)3/2f(1ε)(L2un)1/28C(1I(f)))1I(f)1εI(f)+δ=η0.

We obtain

P(w(,)(L2un)1/2(L3un)3/2f1ε(L2un)1/218C(1I(f)))(logun)η0(L3un)3.

By (2.1) and (2.2), we have

n=1P((L2un)(L3un)3/2w(un,un)un2(L2un)(L3un)3f1ε8C(1I(f)))<.

By Borel-Cantelli's lemma, Lemma 2.2 is proved.

Proof of (1.1) Let h(u)=u2(L2u)(L3u)3, ψu(x,y)=w(ux,uy)h(u),x,y[0,1], and let un be defined as in Lemma 2.2, such that unu<un+1. Let X(u)=(L2u)(L3u)3/2ψu(,)f(,), Xn=infunu<un+1X(u). Then for any ε>0, by definition of infimum, there exists a Tn[un,un+1), such that XnX(Tn)ε. We have

ψun(,)f(,)=h(Tn)h(un)ψTn(unTn,unTn)f(,)=h(Tn)h(un){ψTn(unTn,unTn)f(unTn,unTn)}+h(Tn)h(un)f(unTn,unTn)f(,)h(Tn)h(un)ψTn(,)f(,)+|h(Tn)h(un)1|f(,)+f(unTn,unTn)f(,).

By Lemma 2.1

f(unTn,unTn)f(,)(1unTn)+2(1unTn)1/2(1unun+1)+2(1unun+1)1/2,

moreover,

|h(Tn)h(un)1||un+12(L2un+1)(L3un+1)3un2(L2un)(L3un)31||(un+1un)31|.

By the inequality exp(x)1x,x>0, we have

unun+11n+1(log(n+1))3+n(logn)3,

(unun+1)313(n+1)(log(n+1))3+3n(logn)3,

which implies

1unun+11(logn)3,

1(unun+1)33(logn)3.

By (2.3)−(2.7) and Lemma 2.2, we have

lim infnX(Tn)18C(1I(f)),a.s.

Since lim infuX(u)lim infnXnlim infnX(Tn)ε, (1.1) is proved.

The proof of (1.2) is similar to that of (1.1). Hereby omitted.

2.2 Proof of Theorem 1.2

Our proofs are based on the following lemmas.

Lemma 2.3 [7, Lemma 2.1]  For any closed set FC0 and for any open set GC0, we have

lim supε0εlogP(εwF)inffFI(f);lim infε0εlogP(εwG)inffGI(f).

Lemma 2.4  Let un=nn. Then we have

lim supnw(un,un)un2(L2un)(L3un)3K=0,a.s.

Proof LetA={gC;g()Kε}. Then set A is closed. For any gA, there exists a δ>0, such that η0:=infgAI(g)>1+δ. Since

P(w(un,un)un2(L2un)(L3un)3Kε)=P(w(,)(L2un)(L3un)3Kε)=P(w(,)(L2un)(L3un)3A),

by Lemma 2.3, we have

P(w(un,un)un2(L2un)(L3un)3Kε)(1logun)η0(L3un)3.

By Borel-Cantelli's lemma, Lemma 2.4 is proved.

Proof of (1.3) For u large enough, there exists an increasing sequence un=nn such that un1<uun. Then it is sufficient to show that: for any fK with I(f)<1,

lim infn(L2un)b(L3un)3/2w(un,un)un2(L2un)b(L3un)3f(,)b3C8(1I(f)),a.s.

The proof of (2.8) is as follows. We have

w(un,un)un2(L2un)b(L3un)3f(,)=sup0s1sup0t1|w(uns,unt)un2(L2un)b(L3un)3f(s,t)|sup0sun1unsup0tun1un|w(uns,unt)un2(L2un)b(L3un)3f(s,t)|+supun1uns1supun1unt1|w(uns,unt)un2(L2un)b(L3un)3f(s,t)|=w(un1,un1)un2(L2un)b(L3un)3f(un1un,un1un)+supun1uns1supun1unt1|w(uns,unt)un2(L2un)b(L3un)3f(s,t)|.

First of all, we prove that

lim supn(L2un)b(L3un)3/2w(un1,un1)un2(L2un)b(L3un)3f(un1un,un1un)=0,a.s.

In fact,

w(un1,un1)un2(L2un)b(L3un)3f(un1un,un1un)un1un(L2un1)(L3un1)3(L2un)b(L3un)3w(un1,un1)un12(L2un1)(L3un1)3+f(un1un,un1un),

by Lemma 2.4, w(un1,un1)un12(L2un1)(L3un1)3 is almost surely bounded, thus

(L2un)b(L3un)3/2un1un(L2un1)(L3un1)3(L2un)b(L3un)3w(un1,un1)un12(L2un1)(L3un1)3=un1un(L2un)b/2(L2un1)(L3un1)3w(un1,un1)un12(L2un1)(L3un1)30,(n).

Moreover, for fK, we have

f(un1un,un1un)un1un,

which follows that

(L2un)b(L3un)3/2f(un1un,un1un)(L2un)b(L3un)3/2un1un0,(n).

Second, we prove that

lim infn(L2un)b(L3un)3/2supun1uns1supun1unt1|w(uns,unt)un2(L2un)b(L3un)3f(s,t)|b3C8(1I(f))a.s.

In fact,

supun1uns1supun1unt1|w(uns,unt)un2(L2un)b(L3un)3f(s,t)|=supun1uns1supun1unt1|(w(uns,unt)w(uns,un1)w(un1,unt)+w(un1,un1))un2(L2un)b(L3un)3f(s,t)+1un2(L2un)b(L3un)3(w(uns,un1)+w(un1,unt)w(un1,un1))|sup0s1sup0t1|1un2(L2un)b(L3un)3{w((unun1)s+un1,(unun1)t+un1)w((unun1)s+un1,un1)w(un1,(unun1)t+un1)+w(un1,un1)}f((unun1)s+un1un,(unun1)t+un1un)|+supun1uns1supun1unt1|w(uns,un1)+w(un1,unt)w(un1,un1)un2(L2un)b(L3un)3|.

Moreover

supun1uns1supun1unt1|w(uns,un1)+w(un1,unt)w(un1,un1)un2(L2un)b(L3un)3|supun1uns1supun1unt1|{w(uns,un1t)+w(un1s,unt)w(un1s,un1t)}un2(L2un)b(L3un)3|supun1uns1supun1unt1|w(uns,un1t)un2(L2un)b(L3un)3|+supun1uns1supun1unt1|w(un1s,unt)un2(L2un)b(L3un)3|

+supun1uns1supun1unt1|1un2(L2un)b(L3un)3w(un1s,un1t)|sup0s1sup0t1|w(uns,un1t)un2(L2un)b(L3un)3|+sup0s1sup0t1|w(un1s,unt)un2(L2un)b(L3un)3|+sup0s1sup0t1|1un2(L2un)b(L3un)3w(un1s,un1t)|=un1unL2un(L2un)b(L3un)31unun1L2unw(un,un1)+un1unL2un(L2un)b(L3un)31unun1L2unw(un1,un)+un1unL2un(L2un)b(L3un)31un12L2unw(un1,un1).

Similar to the proof of Lemma 2.4, we see that w(un,un1)unun1L2un, w(un1,un)unun1L2un, w(un1,un1)un12L2un are almost surely bounded. We have:

(L2un)b(L3un)3/2supun1uns1supun1unt1|w(uns,un1)+w(un1,unt)w(un1,un1)un2(L2un)b(L3un)3|(L2un)b(L3un)3/2(un1unL2un(L2un)b(L3un)3w(un,un1)unun1L2un+un1unL2un(L2un)b(L3un)3w(un1,un)unun1L2un+un1unL2un(L2un)b(L3un)3w(un1,un1)un12L2un)0,(n).

Let

wn(s,t):=sup0s1sup0t1|1un2(L2un)b(L3un)3{w((unun1)s+un1,(unun1)t+un1)w((unun1)s+un1,un1)w(un1,(unun1)t+un1)+w(un1,un1)}f((unun1)s+un1un,(unun1)t+un1un)|,

w~n(s,t):=1(L2un)b(L3un)3(unun1){w((unun1)s+un1,(unun1)t+un1)w((unun1)s+un1,un1)w(un1,(unun1)t+un1)+w(un1,un1)},

g(s,t):=ununun1f((unun1)s+un1un,(unun1)t+un1un).

Then I(g)I(f), thus gK. We need only to prove that

lim infn(L2un)b(L3un)3/2wn(s,t)b3C8(1I(f)),a.s.

We have

P((L2un)b(L3un)3/2wn(s,t)b3C8(1I(f))(1+ε))=P((L2un)b(L3un)3/2unun1unw~n(,)gb3C8(1I(f))(1+ε))P((L2un)b(L3un)3/2w~n(,)gb3C8(1I(f))(1+ε))=P((L2un)b(L3un)3/2w(,)(L2un))b(L3un)3gb3C8(1I(f))(1+ε))=P(w(,)(L2un)b/2(L3un)3/2gb3C8(1I(f))(1+ε)(L2un)b/2).

For fK with I(f)<1, we have 1I(f)1+ε<1I(f)<1I(g). Choose δ>0, such that η:=I(g)+1I(f)1+ε+δ<1. By Proposition 4.2 in [5] and Theorem 1.1 in [6], for n large enough

(L2un)b(L3un)3logP(w(,)(L2un)b/2(L3un)3/2gb3C8(1I(f))(1+ε)(L2un)b/2)(L2un)b(L3un)3logP(w(,)b3C8(1I(f))(1+ε)(L2un)b/2)I(g)δ(L2un)b(L3un)3(C8(1I(f))b3C(L2un)b(1+ε)2(log8(1I(f))(L2un)bb3C(1+ε)2)3)I(g)δ1I(f)1+εI(g)δ=η,

thus

P(w(,)(L2un)b/2(L3un)3/2gb3C8(1I(f))(1+ε)(L2un)b/2)(logun)η(L3un)3(logun)1b,

Which follows that

n=1P((L2un)b(L3un)3/2wn(s,t)b3C8(1I(f))(1+ε))=.

By Borel-Cantelli's lemma,

lim infn(L2un)b(L3un)3/2wn(s,t)b3C8(1I(f)),a.s.

Hither, (2.8) is proved. It follows that (1.3) is proved.

The proof of (1.4) is similar to that of (1.3). Hereby omitted.

References

[1]

ChenB. On Strassen’s version of the law of the iterated logarithm for the two-parameter Wiener process. In: Asymptotic Methods in Probability and Statistics (Otawa, OW, 1997), Amsterdam: North-Holland, 1998, 343–358

[2]

Gao F, Wang Q. The rate of convergence in the functional limit theorem for increments of a Brownian motion. Statist Probab Lett 2005; 73(2): 165–177

[3]

Kuelbs J, Li W V. Small ball estimates for Brownian motion and the Brownian sheet. J Theoret Probab 1993; 6(3): 547–577

[4]

Lucas A. Fractales aléatoires de type Chung pour les accroissements du processus de Wiener. C R Acad Sci Paris Sér I 1998; 326(9): 1123–1126

[5]

Monrad D, Rootzén H. Small values of Gaussian processes and functional laws of the iterated logarithm. Probab Theory Related Fields 1995; 101(2): 173–192

[6]

Talagrand M. The small ball problem for the Brownian sheet. Ann Probab 1994; 22(3): 1331–1354

[7]

Wang W. On Strassen-type theorem for the increments of two-parameter Wiener processes. Chinese Ann Math Ser A 2001; 22(1): 27–34

[8]

Xu J. Quasi sure functional modulus of continuity for a two-parameter Wiener process in Hölder norm. J Math Anal Appl 2016; 434: 501–515

[9]

Xu J, Miao Y, Liu J. Quasi sure functional limit theorem for increments of a fractional Brownian sheet in Hölder norm. Comm Statist Theory Methods 2016; 45(5): 1564–1574

RIGHTS & PERMISSIONS

Higher Education Press 2022

AI Summary AI Mindmap
PDF (384KB)

803

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/