Frontiers of Mathematics in China >
Symmetric Hermitian decomposability criterion, decomposition, and its applications
Received date: 16 Jan 2021
Accepted date: 24 Mar 2021
Published date: 15 Oct 2022
Copyright
The Hermitian tensor is an extension of Hermitian matrices and plays an important role in quantum information research. It is known that every symmetric tensor has a symmetric CP-decomposition. However, symmetric Hermitian tensor is not the case. In this paper, we obtain a necessary and sufficient condition for symmetric Hermitian decomposability of symmetric Hermitian tensors. When a symmetric Hermitian decomposable tensor space is regarded as a linear space over the real number field, we also obtain its dimension formula and basis. Moreover, if the tensor is symmetric Hermitian decomposable, then the symmetric Hermitian decomposition can be obtained by using the symmetric Hermitian basis. In the application of quantum information, the symmetric Hermitian decomposability condition can be used to determine the symmetry separability of symmetric quantum mixed states.
Guyan NI , Bo YANG . Symmetric Hermitian decomposability criterion, decomposition, and its applications[J]. Frontiers of Mathematics in China, 2022 , 17(5) : 961 -986 . DOI: 10.1007/s11464-021-0927-4
1 |
Bohnet-Waldraff F, Braun D, Giraud O. Tensor eigenvalues and entanglement of symmetric states. Phys Rev A, 2016, 94: 042324
|
2 |
Bohnet-Waldraff F, Braun D, Giraud O. Entanglement and the truncated moment problem. Phys Rev A, 2017, 96: 032312
|
3 |
Brachat J, Comon P, Mourrain B, Tsigaridas E. Symmetric tensor decomposition. Linear Algebra Appl, 2010, 433: 1851–1872
|
4 |
Breiding P, Vannieuwenhoven N. A Riemannian trust region method for the canonical tensor rank approximation problem. SIAM J Optim, 2018, 28: 2435–2465
|
5 |
Chang K-C, Pearson K, Zhang T. On eigenvalue problems of real symmetric tensors. J Math Anal Appl, 2009, 350: 416–422
|
6 |
Chiantini L, Ottaviani G, Vannieuwenhoven N. Effective criteria for specific identifiability of tensors and forms. SIAM J Matrix Anal Appl, 2017, 38: 656–681
|
7 |
Comon P, Golub G, Lim L -H, Mourrain B. Symmetric tensors and symmetric tensor rank. SIAM J Matrix Anal Appl, 2008, 30: 1254–1279
|
8 |
Comon P, Lim L-H, Qi Y, Ye K. Topology of tensor ranks. Adv Math, 2020, 367: 107–128
|
9 |
Derksen H, Friedland S, Lim L-H, Wang L. Theoretical and computational aspects of entanglement. arXiv: 1705.07160
|
10 |
Domanov I, Lathauwer L De.. Generic uniqueness conditions for the canonical polyadic decomposition and INDSCAL. SIAM J Matrix Anal Appl, 2015, 36: 1567–1589
|
11 |
Dressler M, Nie J, Yang Z. Separability of Hermitian tensors and PSD decompositions. Linear Algebra Appl, doi.org/10.1080/03081087.2021.1965078
|
12 |
Fu T, Jiang B, Li Z. On decompositions and approximations of conjugate partial-symmetric complex tensors. arXiv: 1802.09013
|
13 |
Galuppi F, Mella M. Identifiability of homogeneous polynomials and Cremona transformations. J Reine Angew Math, 2019, 757: 279–308
|
14 |
Giraud O, Braun D, Baguette D, Bastin T, Martin J. Tensor representation of spin states. Phys Rev Lett, 2015, 114: 080401
|
15 |
Horodecki M, Horodecki P. Reduction criterion of separability and limits for a class of distillation protocols. Phys Rev A, 1999, 59: 4206–4216
|
16 |
Jiang B, Li Z, Zhang S. Characterizing real-valued multivariate complex polynomials and their symmetric tensor representations. SIAM J Matrix Anal Appl, 2016, 37: 381–408
|
17 |
Kolda T G, Bader B W. Tensor decompositions and applications. SIAM Rev, 2009, 51: 455–500
|
18 |
Kruskal J. Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics. Linear Algebra Appl, 1977, 18: 95–138
|
19 |
Landsberg J M. Tensors: Geometry and Applications. Grad Stud Math, Vol 128. Providence: Amer Math Soc, 2012
|
20 |
Landsberg J M, Teitler Z. On the ranks and border ranks of symmetric tensors. Found Comput Math, 2010, 10: 339–366
|
21 |
Lathauwer L De.. A link between the canonical decomposition in multilinear algebra and simultaneous matrix diagonalization. SIAM J Matrix Anal Appl, 2006, 28: 642–666
|
22 |
Lathauwer L De, Moor B De, Vandewalle J. Computation of the canonical decomposition by means of a simultaneous generalized Schur decomposition. SIAM J Matrix Anal Appl, 2004, 26: 295–327
|
23 |
Li Y, Ni G. Separability discrimination and decomposition of m-partite quantum mixed states. Phys Rev A, 2020, 102: 012402
|
24 |
Li Z, Nakatsukasa Y, Soma T, Uschmajew A. On orthogonal tensors and best rank-one approximation ratio. SIAM J Matrix Anal Appl, 2018, 39: 400–425
|
25 |
Lim L-H. Tensors and hypermatrices. In: Hogben L, ed. Handbook of Linear Algebra. 2nd ed. Discrete Math Appl (Boca Raton). Boca Raton: CRC Press, 2014, 15-1–15-30
|
26 |
Milazzo N, Braun D, Giraud O. Truncated moment sequences and a solution to the channel separability problem. arXiv: 2006.15003
|
27 |
Ni G. Hermitian tensor and quantum mixed state. arXiv: 1902.02640
|
28 |
Ni G, Qi L, Bai M. Geometric measure of entanglement and U-eigenvalues of tensors. SIAM J Matrix Anal Appl, 2014, 35: 73–87
|
29 |
Nie J. Generating polynomials and symmetric tensor decompositions. Found Comput Math, 2017, 17: 423–465
|
30 |
Nie J. Low rank symmetric tensor approximations. SIAM J Matrix Anal Appl, 2017, 38: 1517–1540
|
31 |
Nie J, Yang Z. Hermitian tensor decompositions. SIAM J Matrix Anal Appl, 2020, 41(3): 1115–1144
|
32 |
Nie J, Zhang X. Positive maps and separable matrices. SIAM J Optim, 2018, 26(2): 1236-1256
|
33 |
Qi L, Xu C, Xu Y. Nonnegative tensor factorization, completely positive tensors and a hierarchical elimination algorithm. SIAM J Matrix Anal Appl, 2014, 35: 1227–1241
|
34 |
Qi L, Zhang G, Braun D, Bohnet-Waldraff F, Giraud O. Regularly decomposable tensors and classical spin states. Commun Math Sci, 2017, 15: 1651–1665
|
35 |
Qi L, Zhang G, Ni G. How entangled can a multi-party system possibly be? Phys Lett A, 2018, 382: 1465–1471
|
36 |
Sidiropoulos N, Bro R. On the uniqueness of multilinear decomposition of N-way arrays. J Chemometrics, 2000, 14: 229–239
|
37 |
Sorber L, Barel M Van, Lathauwer L De.. Optimization-based algorithms for tensor decompositions: canonical polyadic decomposition, decomposition in rank-(Lr, Lr, 1) terms, and a new generalization. SIAM J Optim, 2013, 23: 695–720
|
38 |
Wei T-C, Goldbart P M. Geometric measure of entanglement and applications to bipartite and multipartite quantum states. Phys Rev A, 2003, 68: 042307
|
39 |
Zhou A, Fan J. Completely positive tensor recovery with minimal nuclear value. Comput Optim Appl, 2018, 70: 419–441
|
/
〈 | 〉 |