RESEARCH ARTICLE

Error term concerning number of subgroups of group m×n with m2+n2x

  • Yankun SUI ,
  • Dan LIU
Expand
  • Department of Mathematics, China University of Mining and Technology, Beijing 100083, China

Received date: 27 Mar 2021

Accepted date: 10 Jul 2021

Published date: 15 Oct 2022

Copyright

2022 Higher Education Press

Abstract

Let m be the additive group of residue classes modulo m. Let s(m, n) denote the number of subgroups of the group m×n, where m and n are arbitrary positive integers. For any x1, we consider the asymptotic behavior of Ds(x):=m2+n2xS(M,n) and obtain an asymptotic formula by using the elementary method.

Cite this article

Yankun SUI , Dan LIU . Error term concerning number of subgroups of group m×n with m2+n2x[J]. Frontiers of Mathematics in China, 2022 , 17(5) : 987 -999 . DOI: 10.1007/s11464-021-0956-z

1
Bourgain J, Watt N. Mean square of zeta function, circle problem and divisor problem revisited. arXiv: 1709.04340v1

2
Fouvry E, Iwaniec H. Exponential sums with monomials. J Number Theory, 1989, 33: 311–333

DOI

3
Hampejs M, Holighaus N, Tóth L, Wiesmeyr C. Representing and counting the subgroups of the group ℤm×ℤn. J Numbers, 2014, 2014: 491428

DOI

4
Ivić A. The Riemann Zeta-Function: The Theory of the Riemann Zeta-Function with Applications. New York: Wiley, 1985

5
Mertens F. Ueber einige asymptotische Gesetze der Zahlentheorie. J Reine Angew Math, 1874, 77: 289–338

DOI

6
Nowak W G, Tóth L. On the average number of subgroups of the group ℤm×ℤn. Int J Number Theory, 2014, 10: 363–374

DOI

7
Sui Y K, Liu D. On the error term concerning the number of subgroups of the groups ℤm×ℤn with mnx. J Number Theory, 2020, 216: 264–279

DOI

8
Tóth L, Zhai W G. On the error term concerning the number of subgroups of the group ℤm×ℤn with m, nx. Acta Arith, 2018, 183(3): 285–299

DOI

9
Voronoï G. Sur une fonction transcendante et ses applications à la sommation de quelques séries. Ann Sci Éc Norm Supér (3), 1904, 21: 207–267, 459–533

DOI

Outlines

/