Frontiers of Mathematics in China >
Error term concerning number of subgroups of group with
Received date: 27 Mar 2021
Accepted date: 10 Jul 2021
Published date: 15 Oct 2022
Copyright
Let be the additive group of residue classes modulo m. Let s(m, n) denote the number of subgroups of the group , where m and n are arbitrary positive integers. For any , we consider the asymptotic behavior of and obtain an asymptotic formula by using the elementary method.
Key words: Number of subgroups; asymptotic formula; error term; exponential sums
Yankun SUI , Dan LIU . Error term concerning number of subgroups of group with [J]. Frontiers of Mathematics in China, 2022 , 17(5) : 987 -999 . DOI: 10.1007/s11464-021-0956-z
1 |
Bourgain J, Watt N. Mean square of zeta function, circle problem and divisor problem revisited. arXiv: 1709.04340v1
|
2 |
Fouvry E, Iwaniec H. Exponential sums with monomials. J Number Theory, 1989, 33: 311–333
|
3 |
Hampejs M, Holighaus N, Tóth L, Wiesmeyr C. Representing and counting the subgroups of the group ℤm×ℤn. J Numbers, 2014, 2014: 491428
|
4 |
Ivić A. The Riemann Zeta-Function: The Theory of the Riemann Zeta-Function with Applications. New York: Wiley, 1985
|
5 |
Mertens F. Ueber einige asymptotische Gesetze der Zahlentheorie. J Reine Angew Math, 1874, 77: 289–338
|
6 |
Nowak W G, Tóth L. On the average number of subgroups of the group ℤm×ℤn. Int J Number Theory, 2014, 10: 363–374
|
7 |
Sui Y K, Liu D. On the error term concerning the number of subgroups of the groups ℤm×ℤn with mn ≤ x. J Number Theory, 2020, 216: 264–279
|
8 |
Tóth L, Zhai W G. On the error term concerning the number of subgroups of the group ℤm×ℤn with m, n ≤ x. Acta Arith, 2018, 183(3): 285–299
|
9 |
Voronoï G. Sur une fonction transcendante et ses applications à la sommation de quelques séries. Ann Sci Éc Norm Supér (3), 1904, 21: 207–267, 459–533
|
/
〈 | 〉 |