Error term concerning number of subgroups of group m×n with m2+n2x

Yankun SUI , Dan LIU

Front. Math. China ›› 2022, Vol. 17 ›› Issue (5) : 987 -999.

PDF (301KB)
Front. Math. China ›› 2022, Vol. 17 ›› Issue (5) : 987 -999. DOI: 10.1007/s11464-021-0956-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Error term concerning number of subgroups of group m×n with m2+n2x

Author information +
History +
PDF (301KB)

Abstract

Let m be the additive group of residue classes modulo m. Let s(m, n) denote the number of subgroups of the group m×n, where m and n are arbitrary positive integers. For any x1, we consider the asymptotic behavior of Ds(x):=m2+n2xS(M,n) and obtain an asymptotic formula by using the elementary method.

Keywords

Number of subgroups / asymptotic formula / error term / exponential sums

Cite this article

Download citation ▾
Yankun SUI, Dan LIU. Error term concerning number of subgroups of group m×n with m2+n2x. Front. Math. China, 2022, 17(5): 987-999 DOI:10.1007/s11464-021-0956-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bourgain J, Watt N. Mean square of zeta function, circle problem and divisor problem revisited. arXiv: 1709.04340v1

[2]

Fouvry E, Iwaniec H. Exponential sums with monomials. J Number Theory, 1989, 33: 311–333

[3]

Hampejs M, Holighaus N, Tóth L, Wiesmeyr C. Representing and counting the subgroups of the group ℤm×ℤn. J Numbers, 2014, 2014: 491428

[4]

Ivić A. The Riemann Zeta-Function: The Theory of the Riemann Zeta-Function with Applications. New York: Wiley, 1985

[5]

Mertens F. Ueber einige asymptotische Gesetze der Zahlentheorie. J Reine Angew Math, 1874, 77: 289–338

[6]

Nowak W G, Tóth L. On the average number of subgroups of the group ℤm×ℤn. Int J Number Theory, 2014, 10: 363–374

[7]

Sui Y K, Liu D. On the error term concerning the number of subgroups of the groups ℤm×ℤn with mnx. J Number Theory, 2020, 216: 264–279

[8]

Tóth L, Zhai W G. On the error term concerning the number of subgroups of the group ℤm×ℤn with m, nx. Acta Arith, 2018, 183(3): 285–299

[9]

Voronoï G. Sur une fonction transcendante et ses applications à la sommation de quelques séries. Ann Sci Éc Norm Supér (3), 1904, 21: 207–267, 459–533

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (301KB)

384

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/