Error term concerning number of subgroups of group
Yankun SUI, Dan LIU
Error term concerning number of subgroups of group
Let be the additive group of residue classes modulo m. Let s(m, n) denote the number of subgroups of the group , where m and n are arbitrary positive integers. For any , we consider the asymptotic behavior of and obtain an asymptotic formula by using the elementary method.
Number of subgroups / asymptotic formula / error term / exponential sums
[1] |
Bourgain J, Watt N. Mean square of zeta function, circle problem and divisor problem revisited. arXiv: 1709.04340v1
|
[2] |
Fouvry E, Iwaniec H. Exponential sums with monomials. J Number Theory, 1989, 33: 311–333
CrossRef
Google scholar
|
[3] |
Hampejs M, Holighaus N, Tóth L, Wiesmeyr C. Representing and counting the subgroups of the group ℤm×ℤn. J Numbers, 2014, 2014: 491428
CrossRef
Google scholar
|
[4] |
Ivić A. The Riemann Zeta-Function: The Theory of the Riemann Zeta-Function with Applications. New York: Wiley, 1985
|
[5] |
Mertens F. Ueber einige asymptotische Gesetze der Zahlentheorie. J Reine Angew Math, 1874, 77: 289–338
CrossRef
Google scholar
|
[6] |
Nowak W G, Tóth L. On the average number of subgroups of the group ℤm×ℤn. Int J Number Theory, 2014, 10: 363–374
CrossRef
Google scholar
|
[7] |
Sui Y K, Liu D. On the error term concerning the number of subgroups of the groups ℤm×ℤn with mn ≤ x. J Number Theory, 2020, 216: 264–279
CrossRef
Google scholar
|
[8] |
Tóth L, Zhai W G. On the error term concerning the number of subgroups of the group ℤm×ℤn with m, n ≤ x. Acta Arith, 2018, 183(3): 285–299
CrossRef
Google scholar
|
[9] |
Voronoï G. Sur une fonction transcendante et ses applications à la sommation de quelques séries. Ann Sci Éc Norm Supér (3), 1904, 21: 207–267, 459–533
CrossRef
Google scholar
|
/
〈 | 〉 |