Frontiers of Mathematics in China >
General M-lump, high-order breather, and localized interaction solutions to -dimensional generalized Bogoyavlensky-Konopelchenko equation
Received date: 20 Dec 2020
Accepted date: 24 Feb 2021
Published date: 15 Oct 2022
Copyright
The -dimensional generalized Bogoyavlensky-Konopelchenko equation is a significant physical model. By using the long wave limit method and confining the conjugation conditions on the interrelated solitons, the general M-lump, high-order breather, and localized interaction hybrid solutions are investigated, respectively. Then we implement the numerical simulations to research their dynamical behaviors, which indicate that different parameters have very different dynamic properties and propagation modes of the waves. The method involved can be validly employed to get high-order waves and study their propagation phenomena of many nonlinear equations.
Hongcai MA , Yunxiang BAI , Aiping DENG . General M-lump, high-order breather, and localized interaction solutions to -dimensional generalized Bogoyavlensky-Konopelchenko equation[J]. Frontiers of Mathematics in China, 2022 , 17(5) : 943 -960 . DOI: 10.1007/s11464-021-0918-5
1 |
Ablowitz M J, Kaup D J, Newell A C, Segur H. The inverse scattering transform—Fourier analysis for nonlinear problems. Stud Appl Math, 1974, 53(4): 249–315
|
2 |
Ablowitz M J, Segur H. On the evolution of packets of water waves. J Fluid Mech, 1979, 92: 691–715
|
3 |
Ablowitz M J, Segur H. Solitons and the Inverse Scattering Transform. Cambridge: Cambridge Univ Press, 1981
|
4 |
An H L, Feng D L, Zhu H X. General M-lump, high-order breather and localized interaction solutions to the 2 + 1-dimensional Sawada-Kotera equation. Nonlinear Dynam, 2019, 98(2): 1275–1286
|
5 |
Biondini G, Chakravarty S. Elastic and inelastic line-soliton solutions of the Kadomtsev-Petviashvili II equation. Math Comput Simulation, 2007, 74(2-3): 237–250
|
6 |
Chen A H. Multi-kink solutions and soliton fission and fusion of Sharma-Tasso-Olver equation. Phys Lett A, 2010, 374(23): 2340–2345
|
7 |
Chen S T, Ma W X. Lump solutions to a generalized Bogoyavlensky-Konopelchenko equation. Front Math China, 2018, 13(3): 525–534
|
8 |
Chen S T, Ma W X. Lump solutions of a generalized Calogero-Bogoyavlenskii-Schiff equation. Comput Math Appl, 2018, 76(7): 1680–1685
|
9 |
Dang Y L, Li H J, Lin J. Soliton solutions in nonlocal nonlinear coupler. Nonlinear Dynam, 2017, 88(1): 489–501
|
10 |
Gardner C S, Greene J M, Kruskal M D, Miura R M. Method for solving the Kortewegde Vries equation. Phys Rev Lett, 1967, 19: 1095–1097
|
11 |
Gu C H, ed. Soliton Theory and Its Applications. New York: Springer-Verlag, 1995
|
12 |
Konopelchenko B G. Solitons in Multidimensions: Inverse Spectrum Transform Method. Singapore: World Scientific, 1993
|
13 |
Lax P D. Integrals of nonlinear equations of evolution and solitary waves. Commun Pure Appl Math, 1968, XXI: 467–490
|
14 |
Li Q, Chaolu T, Wang Y H. Lump-type solutions and lump solutions for the (2+1)-dimensional generalized Bogoyavlensky-Konopelchenko equation. Comput Math Appl, 2019, 77(8): 2077–2085
|
15 |
Liu J G, Zhu W H, Osman M S, Ma W X. An explicit plethora of different classes of interactive lump solutions for an extension form of 3D-Jimbo-Miwa model. Eur Phys J Plus, 2020, 135(5): 412
|
16 |
Lü X, Li J. Integrability with symbolic computation on the Bogoyavlensky-Konoplechenko model: Bell-polynomial manipulation, bilinear representation, and Wronskian solution. Nonlinear Dynam, 2014, 77(1-2): 135–143
|
17 |
Ma H C, Deng A P. Lump solution of (2+1)-dimensional Boussinesq equation. Commun Theor Phys (Beijing), 2016, 65(5): 546–552
|
18 |
Ma H C, Meng X M, Wu H F, Deng A P. A class of lump solutions for Ito equation. Thermal Sci, 2019, 23(4): 2205–2210
|
19 |
Ma W X. Lump solutions to the Kadomtsev-Petviashvili equation. Phys Lett A, 2015, 379(36): 1975–1978
|
20 |
Ma W X. Riemann-Hilbert problems and soliton solutions of a multicomponent mKdV system and its reduction. Math Methods Appl Sci, 2019, 42(4): 1099–1113
|
21 |
Ma W X. N-soliton solutions and the Hirota conditions in (2+1)-dimensions. Opt Quantum Electron, 2020, 52(12): 511
|
22 |
Ma W X, Fan E G. Linear superposition principle applying to Hirota bilinear equations. Comput Math Appl, 2011, 61(4): 950–959
|
23 |
Ma W X, Zhang Y, Tang Y N. Symbolic computation of lump solutions to a combined equation involving three types of nonlinear terms. East Asian J Appl Math, 2020, 10(4): 732–745
|
24 |
Manafian J, Mohammadi Ivatloo B, Abapour M. Breather wave, periodic, and cross-kink solutions to the generalized Bogoyavlensky-Konopelchenko equation. Math Methods Appl Sci, 2020, 43(4): 1753–1774
|
25 |
Manakov S V, Zakharov V E, Bordag L A, Its A R, Matveev V B. Two-dimensional solitons of the Kadomtsev-Petviashvili equation and their interaction. Phys Lett A, 1977, 63(3): 205–206
|
26 |
Peng W Q, Tian S F, Zhang T T. Analysis on lump, lumpoff and rogue waves with predictability to the (2+1)-dimensional B-type Kadomtsev-Petviashvili equation. Phys Lett A, 2018, 382(38): 2701–2708
|
27 |
Pouyanmehr R, Hosseini K, Ansari R, Alavi S H. Different wave structures to the (2+1)-dimensional generalized Bogoyavlensky-Konopelchenko equation. Int J Appl Comput Math, 2019, 5(6): 149
|
28 |
Ray S S. On conservation laws by Lie symmetry analysis for (2+1)-dimensional Bogoyavlensky-Konopelchenko equation in wave propagation. Comput Math Appl, 2017, 74(6): 1158–1165
|
29 |
Ren B, Ma W X, Yu J. Lump solutions for two mixed Calogero-Bogoyavlenskii-Schiff and Bogoyavlensky-Konopelchenko equations. Commun Theor Phys (Beijing), 2019, 71(6): 658–662
|
30 |
Satsuma J, Ablowitz M J. Two-dimensional lumps in nonlinear dispersive systems. J Math Phys, 1979, 20(7): 1496–1503
|
31 |
Stenflo L, Marklund M. Rogue waves in the atmosphere. J Plasma Phys, 2010, 76: 293–295
|
32 |
Tan W, Dai Z D, Yin Z Y. Dynamics of multi-breathers, N-solitons and M-lump solutions in the (2+1)-dimensional KdV equation. Nonlinear Dynam, 2019, 96(2): 1605–1614
|
33 |
Toda K, Yu S J. A study of the construction of equations in (2+1)dimensions. Inverse Problems, 2001, 17(4): 1053–1060
|
34 |
Triki H, Jovanoski Z, Biswas A. Shock wave solutions to the Bogoyavlensky-Konopelchenko equation. Indian J Phys, 2014, 88(1): 71–74
|
35 |
Wang D S, Wang X L. Long-time asymptotics and the bright N-soliton solutions of the Kundu-Eckhaus equation via the Riemann-Hilbert approach. Nonlinear Anal Real World Appl, 2018, 41: 334–361
|
36 |
Wang L, Liu C, Wu X, Wang X, Sun W R. Dynamics of superregular breathers in the quintic nonlinear Schrödinger equation. Nonlinear Dynam, 2018, 94(2): 977–989
|
37 |
Wang Y F, Tian B, Jiang Y. Soliton fusion and fission in a generalized variable-coefficient fifth-order Korteweg-de Vries equation in fluids. Appl Math Comput, 2017, 292: 448–456
|
38 |
Wang Y L, Gao Y T, Jia S L, Deng G F, Hu W Q. Solitons for a (2+1)-dimensional variable-coefficient Bogoyavlensky-Konopelchenko equation in a fluid. Modern Phys Lett B, 2017, 31(25): 1750216
|
39 |
Wazwaz A M. Negative-order integrable modified KdV equations of higher orders. Nonlinear Dynam, 2018, 93(3): 1371–1376
|
40 |
Xu M J, Xia T C, Hu B B. Riemann-Hilbert approach and N-soliton solutions for the Chen-Lee-Liu equation. Modern Phys Lett B, 2019, 33(02): 1950002
|
41 |
Yan H, Tian S F, Feng L L, Zhang T T. Quasi-periodic wave solutions, soliton solutions, and integrability to a (2+1)-dimensional generalized Bogoyavlensky-Konopelchenko equation. Wave Random Complex media, 2016, 26(4): 444–457
|
42 |
Zhang H Q, Ma W X. Resonant multiple wave solutions for a (3+1)-dimensional non-linear evolution equation by linear superposition principle. Comput Math Appl, 2017, 73(10): 2339–2343
|
43 |
Zhang W G, Zhao Y N, Chen A H. The elastic-fusion-coupled interaction for the Boussinesq equation and new soliton solutions of the KP equation. Appl Math Comput, 2015 259: 251–257
|
44 |
Zhang W J, Xia T C. Solitary wave, M-lump and localized interaction solutions to the (4+1)-dimensional Fokas equation. Phys Scripta, 2020, 95(4): 045217
|
45 |
Zhang Y, Liu Y P, Tang X Y. M-lump and interactive solutions to a (3+1)-dimensional nonlinear system. Nonlinear Dynam, 2018, 93(4): 2533–2541
|
46 |
Zhou Y, Manukure S, Ma W X. Lump and lump-soliton solutions to the Hirota-Satsuma-Ito equation. Commun Nonlinear Sci Numer Simul, 2019, 68: 56–62
|
/
〈 |
|
〉 |