RESEARCH ARTICLE

General M-lump, high-order breather, and localized interaction solutions to (2+1)-dimensional generalized Bogoyavlensky-Konopelchenko equation

  • Hongcai MA , 1,2 ,
  • Yunxiang BAI 1 ,
  • Aiping DENG 1,2
Expand
  • 1. Department of Applied Mathematics, Donghua University, Shanghai 201620, China
  • 2. Institute for Nonlinear Sciences, Donghua University, Shanghai 201620, China

Received date: 20 Dec 2020

Accepted date: 24 Feb 2021

Published date: 15 Oct 2022

Copyright

2022 Higher Education Press

Abstract

The (2+1)-dimensional generalized Bogoyavlensky-Konopelchenko equation is a significant physical model. By using the long wave limit method and confining the conjugation conditions on the interrelated solitons, the general M-lump, high-order breather, and localized interaction hybrid solutions are investigated, respectively. Then we implement the numerical simulations to research their dynamical behaviors, which indicate that different parameters have very different dynamic properties and propagation modes of the waves. The method involved can be validly employed to get high-order waves and study their propagation phenomena of many nonlinear equations.

Cite this article

Hongcai MA , Yunxiang BAI , Aiping DENG . General M-lump, high-order breather, and localized interaction solutions to (2+1)-dimensional generalized Bogoyavlensky-Konopelchenko equation[J]. Frontiers of Mathematics in China, 2022 , 17(5) : 943 -960 . DOI: 10.1007/s11464-021-0918-5

1
Ablowitz M J, Kaup D J, Newell A C, Segur H. The inverse scattering transform—Fourier analysis for nonlinear problems. Stud Appl Math, 1974, 53(4): 249–315

DOI

2
Ablowitz M J, Segur H. On the evolution of packets of water waves. J Fluid Mech, 1979, 92: 691–715

DOI

3
Ablowitz M J, Segur H. Solitons and the Inverse Scattering Transform. Cambridge: Cambridge Univ Press, 1981

DOI

4
An H L, Feng D L, Zhu H X. General M-lump, high-order breather and localized interaction solutions to the 2 + 1-dimensional Sawada-Kotera equation. Nonlinear Dynam, 2019, 98(2): 1275–1286

DOI

5
Biondini G, Chakravarty S. Elastic and inelastic line-soliton solutions of the Kadomtsev-Petviashvili II equation. Math Comput Simulation, 2007, 74(2-3): 237–250

DOI

6
Chen A H. Multi-kink solutions and soliton fission and fusion of Sharma-Tasso-Olver equation. Phys Lett A, 2010, 374(23): 2340–2345

DOI

7
Chen S T, Ma W X. Lump solutions to a generalized Bogoyavlensky-Konopelchenko equation. Front Math China, 2018, 13(3): 525–534

DOI

8
Chen S T, Ma W X. Lump solutions of a generalized Calogero-Bogoyavlenskii-Schiff equation. Comput Math Appl, 2018, 76(7): 1680–1685

DOI

9
Dang Y L, Li H J, Lin J. Soliton solutions in nonlocal nonlinear coupler. Nonlinear Dynam, 2017, 88(1): 489–501

DOI

10
Gardner C S, Greene J M, Kruskal M D, Miura R M. Method for solving the Kortewegde Vries equation. Phys Rev Lett, 1967, 19: 1095–1097

DOI

11
Gu C H, ed. Soliton Theory and Its Applications. New York: Springer-Verlag, 1995

DOI

12
Konopelchenko B G. Solitons in Multidimensions: Inverse Spectrum Transform Method. Singapore: World Scientific, 1993

DOI

13
Lax P D. Integrals of nonlinear equations of evolution and solitary waves. Commun Pure Appl Math, 1968, XXI: 467–490

DOI

14
Li Q, Chaolu T, Wang Y H. Lump-type solutions and lump solutions for the (2+1)-dimensional generalized Bogoyavlensky-Konopelchenko equation. Comput Math Appl, 2019, 77(8): 2077–2085

DOI

15
Liu J G, Zhu W H, Osman M S, Ma W X. An explicit plethora of different classes of interactive lump solutions for an extension form of 3D-Jimbo-Miwa model. Eur Phys J Plus, 2020, 135(5): 412

DOI

16
Lü X, Li J. Integrability with symbolic computation on the Bogoyavlensky-Konoplechenko model: Bell-polynomial manipulation, bilinear representation, and Wronskian solution. Nonlinear Dynam, 2014, 77(1-2): 135–143

DOI

17
Ma H C, Deng A P. Lump solution of (2+1)-dimensional Boussinesq equation. Commun Theor Phys (Beijing), 2016, 65(5): 546–552

DOI

18
Ma H C, Meng X M, Wu H F, Deng A P. A class of lump solutions for Ito equation. Thermal Sci, 2019, 23(4): 2205–2210

DOI

19
Ma W X. Lump solutions to the Kadomtsev-Petviashvili equation. Phys Lett A, 2015, 379(36): 1975–1978

DOI

20
Ma W X. Riemann-Hilbert problems and soliton solutions of a multicomponent mKdV system and its reduction. Math Methods Appl Sci, 2019, 42(4): 1099–1113

DOI

21
Ma W X. N-soliton solutions and the Hirota conditions in (2+1)-dimensions. Opt Quantum Electron, 2020, 52(12): 511

DOI

22
Ma W X, Fan E G. Linear superposition principle applying to Hirota bilinear equations. Comput Math Appl, 2011, 61(4): 950–959

DOI

23
Ma W X, Zhang Y, Tang Y N. Symbolic computation of lump solutions to a combined equation involving three types of nonlinear terms. East Asian J Appl Math, 2020, 10(4): 732–745

DOI

24
Manafian J, Mohammadi Ivatloo B, Abapour M. Breather wave, periodic, and cross-kink solutions to the generalized Bogoyavlensky-Konopelchenko equation. Math Methods Appl Sci, 2020, 43(4): 1753–1774

DOI

25
Manakov S V, Zakharov V E, Bordag L A, Its A R, Matveev V B. Two-dimensional solitons of the Kadomtsev-Petviashvili equation and their interaction. Phys Lett A, 1977, 63(3): 205–206

DOI

26
Peng W Q, Tian S F, Zhang T T. Analysis on lump, lumpoff and rogue waves with predictability to the (2+1)-dimensional B-type Kadomtsev-Petviashvili equation. Phys Lett A, 2018, 382(38): 2701–2708

DOI

27
Pouyanmehr R, Hosseini K, Ansari R, Alavi S H. Different wave structures to the (2+1)-dimensional generalized Bogoyavlensky-Konopelchenko equation. Int J Appl Comput Math, 2019, 5(6): 149

DOI

28
Ray S S. On conservation laws by Lie symmetry analysis for (2+1)-dimensional Bogoyavlensky-Konopelchenko equation in wave propagation. Comput Math Appl, 2017, 74(6): 1158–1165

DOI

29
Ren B, Ma W X, Yu J. Lump solutions for two mixed Calogero-Bogoyavlenskii-Schiff and Bogoyavlensky-Konopelchenko equations. Commun Theor Phys (Beijing), 2019, 71(6): 658–662

DOI

30
Satsuma J, Ablowitz M J. Two-dimensional lumps in nonlinear dispersive systems. J Math Phys, 1979, 20(7): 1496–1503

DOI

31
Stenflo L, Marklund M. Rogue waves in the atmosphere. J Plasma Phys, 2010, 76: 293–295

DOI

32
Tan W, Dai Z D, Yin Z Y. Dynamics of multi-breathers, N-solitons and M-lump solutions in the (2+1)-dimensional KdV equation. Nonlinear Dynam, 2019, 96(2): 1605–1614

DOI

33
Toda K, Yu S J. A study of the construction of equations in (2+1)dimensions. Inverse Problems, 2001, 17(4): 1053–1060

DOI

34
Triki H, Jovanoski Z, Biswas A. Shock wave solutions to the Bogoyavlensky-Konopelchenko equation. Indian J Phys, 2014, 88(1): 71–74

DOI

35
Wang D S, Wang X L. Long-time asymptotics and the bright N-soliton solutions of the Kundu-Eckhaus equation via the Riemann-Hilbert approach. Nonlinear Anal Real World Appl, 2018, 41: 334–361

DOI

36
Wang L, Liu C, Wu X, Wang X, Sun W R. Dynamics of superregular breathers in the quintic nonlinear Schrödinger equation. Nonlinear Dynam, 2018, 94(2): 977–989

DOI

37
Wang Y F, Tian B, Jiang Y. Soliton fusion and fission in a generalized variable-coefficient fifth-order Korteweg-de Vries equation in fluids. Appl Math Comput, 2017, 292: 448–456

DOI

38
Wang Y L, Gao Y T, Jia S L, Deng G F, Hu W Q. Solitons for a (2+1)-dimensional variable-coefficient Bogoyavlensky-Konopelchenko equation in a fluid. Modern Phys Lett B, 2017, 31(25): 1750216

DOI

39
Wazwaz A M. Negative-order integrable modified KdV equations of higher orders. Nonlinear Dynam, 2018, 93(3): 1371–1376

DOI

40
Xu M J, Xia T C, Hu B B. Riemann-Hilbert approach and N-soliton solutions for the Chen-Lee-Liu equation. Modern Phys Lett B, 2019, 33(02): 1950002

DOI

41
Yan H, Tian S F, Feng L L, Zhang T T. Quasi-periodic wave solutions, soliton solutions, and integrability to a (2+1)-dimensional generalized Bogoyavlensky-Konopelchenko equation. Wave Random Complex media, 2016, 26(4): 444–457

DOI

42
Zhang H Q, Ma W X. Resonant multiple wave solutions for a (3+1)-dimensional non-linear evolution equation by linear superposition principle. Comput Math Appl, 2017, 73(10): 2339–2343

DOI

43
Zhang W G, Zhao Y N, Chen A H. The elastic-fusion-coupled interaction for the Boussinesq equation and new soliton solutions of the KP equation. Appl Math Comput, 2015 259: 251–257

DOI

44
Zhang W J, Xia T C. Solitary wave, M-lump and localized interaction solutions to the (4+1)-dimensional Fokas equation. Phys Scripta, 2020, 95(4): 045217

DOI

45
Zhang Y, Liu Y P, Tang X Y. M-lump and interactive solutions to a (3+1)-dimensional nonlinear system. Nonlinear Dynam, 2018, 93(4): 2533–2541

DOI

46
Zhou Y, Manukure S, Ma W X. Lump and lump-soliton solutions to the Hirota-Satsuma-Ito equation. Commun Nonlinear Sci Numer Simul, 2019, 68: 56–62

DOI

Outlines

/