General M-lump, high-order breather, and localized interaction solutions to -dimensional generalized Bogoyavlensky-Konopelchenko equation
Hongcai MA , Yunxiang BAI , Aiping DENG
Front. Math. China ›› 2022, Vol. 17 ›› Issue (5) : 943 -960.
General M-lump, high-order breather, and localized interaction solutions to -dimensional generalized Bogoyavlensky-Konopelchenko equation
The -dimensional generalized Bogoyavlensky-Konopelchenko equation is a significant physical model. By using the long wave limit method and confining the conjugation conditions on the interrelated solitons, the general M-lump, high-order breather, and localized interaction hybrid solutions are investigated, respectively. Then we implement the numerical simulations to research their dynamical behaviors, which indicate that different parameters have very different dynamic properties and propagation modes of the waves. The method involved can be validly employed to get high-order waves and study their propagation phenomena of many nonlinear equations.
Bogoyavlensky-Konopelchenko equation / long wave limit / M-lump solution / hybrid solution
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
Gu C H, ed. Soliton Theory and Its Applications. New York: Springer-Verlag, 1995 |
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
Higher Education Press
/
| 〈 |
|
〉 |