General M-lump, high-order breather, and localized interaction solutions to (2+1)-dimensional generalized Bogoyavlensky-Konopelchenko equation

Hongcai MA, Yunxiang BAI, Aiping DENG

PDF(731 KB)
PDF(731 KB)
Front. Math. China ›› 2022, Vol. 17 ›› Issue (5) : 943-960. DOI: 10.1007/s11464-021-0918-5
RESEARCH ARTICLE
RESEARCH ARTICLE

General M-lump, high-order breather, and localized interaction solutions to (2+1)-dimensional generalized Bogoyavlensky-Konopelchenko equation

Author information +
History +

Abstract

The (2+1)-dimensional generalized Bogoyavlensky-Konopelchenko equation is a significant physical model. By using the long wave limit method and confining the conjugation conditions on the interrelated solitons, the general M-lump, high-order breather, and localized interaction hybrid solutions are investigated, respectively. Then we implement the numerical simulations to research their dynamical behaviors, which indicate that different parameters have very different dynamic properties and propagation modes of the waves. The method involved can be validly employed to get high-order waves and study their propagation phenomena of many nonlinear equations.

Keywords

Bogoyavlensky-Konopelchenko equation / long wave limit / M-lump solution / hybrid solution

Cite this article

Download citation ▾
Hongcai MA, Yunxiang BAI, Aiping DENG. General M-lump, high-order breather, and localized interaction solutions to (2+1)-dimensional generalized Bogoyavlensky-Konopelchenko equation. Front. Math. China, 2022, 17(5): 943‒960 https://doi.org/10.1007/s11464-021-0918-5

References

[1]
Ablowitz M J, Kaup D J, Newell A C, Segur H. The inverse scattering transform—Fourier analysis for nonlinear problems. Stud Appl Math, 1974, 53(4): 249–315
CrossRef Google scholar
[2]
Ablowitz M J, Segur H. On the evolution of packets of water waves. J Fluid Mech, 1979, 92: 691–715
CrossRef Google scholar
[3]
Ablowitz M J, Segur H. Solitons and the Inverse Scattering Transform. Cambridge: Cambridge Univ Press, 1981
CrossRef Google scholar
[4]
An H L, Feng D L, Zhu H X. General M-lump, high-order breather and localized interaction solutions to the 2 + 1-dimensional Sawada-Kotera equation. Nonlinear Dynam, 2019, 98(2): 1275–1286
CrossRef Google scholar
[5]
Biondini G, Chakravarty S. Elastic and inelastic line-soliton solutions of the Kadomtsev-Petviashvili II equation. Math Comput Simulation, 2007, 74(2-3): 237–250
CrossRef Google scholar
[6]
Chen A H. Multi-kink solutions and soliton fission and fusion of Sharma-Tasso-Olver equation. Phys Lett A, 2010, 374(23): 2340–2345
CrossRef Google scholar
[7]
Chen S T, Ma W X. Lump solutions to a generalized Bogoyavlensky-Konopelchenko equation. Front Math China, 2018, 13(3): 525–534
CrossRef Google scholar
[8]
Chen S T, Ma W X. Lump solutions of a generalized Calogero-Bogoyavlenskii-Schiff equation. Comput Math Appl, 2018, 76(7): 1680–1685
CrossRef Google scholar
[9]
Dang Y L, Li H J, Lin J. Soliton solutions in nonlocal nonlinear coupler. Nonlinear Dynam, 2017, 88(1): 489–501
CrossRef Google scholar
[10]
Gardner C S, Greene J M, Kruskal M D, Miura R M. Method for solving the Kortewegde Vries equation. Phys Rev Lett, 1967, 19: 1095–1097
CrossRef Google scholar
[11]
Gu C H, ed. Soliton Theory and Its Applications. New York: Springer-Verlag, 1995
CrossRef Google scholar
[12]
Konopelchenko B G. Solitons in Multidimensions: Inverse Spectrum Transform Method. Singapore: World Scientific, 1993
CrossRef Google scholar
[13]
Lax P D. Integrals of nonlinear equations of evolution and solitary waves. Commun Pure Appl Math, 1968, XXI: 467–490
CrossRef Google scholar
[14]
Li Q, Chaolu T, Wang Y H. Lump-type solutions and lump solutions for the (2+1)-dimensional generalized Bogoyavlensky-Konopelchenko equation. Comput Math Appl, 2019, 77(8): 2077–2085
CrossRef Google scholar
[15]
Liu J G, Zhu W H, Osman M S, Ma W X. An explicit plethora of different classes of interactive lump solutions for an extension form of 3D-Jimbo-Miwa model. Eur Phys J Plus, 2020, 135(5): 412
CrossRef Google scholar
[16]
Lü X, Li J. Integrability with symbolic computation on the Bogoyavlensky-Konoplechenko model: Bell-polynomial manipulation, bilinear representation, and Wronskian solution. Nonlinear Dynam, 2014, 77(1-2): 135–143
CrossRef Google scholar
[17]
Ma H C, Deng A P. Lump solution of (2+1)-dimensional Boussinesq equation. Commun Theor Phys (Beijing), 2016, 65(5): 546–552
CrossRef Google scholar
[18]
Ma H C, Meng X M, Wu H F, Deng A P. A class of lump solutions for Ito equation. Thermal Sci, 2019, 23(4): 2205–2210
CrossRef Google scholar
[19]
Ma W X. Lump solutions to the Kadomtsev-Petviashvili equation. Phys Lett A, 2015, 379(36): 1975–1978
CrossRef Google scholar
[20]
Ma W X. Riemann-Hilbert problems and soliton solutions of a multicomponent mKdV system and its reduction. Math Methods Appl Sci, 2019, 42(4): 1099–1113
CrossRef Google scholar
[21]
Ma W X. N-soliton solutions and the Hirota conditions in (2+1)-dimensions. Opt Quantum Electron, 2020, 52(12): 511
CrossRef Google scholar
[22]
Ma W X, Fan E G. Linear superposition principle applying to Hirota bilinear equations. Comput Math Appl, 2011, 61(4): 950–959
CrossRef Google scholar
[23]
Ma W X, Zhang Y, Tang Y N. Symbolic computation of lump solutions to a combined equation involving three types of nonlinear terms. East Asian J Appl Math, 2020, 10(4): 732–745
CrossRef Google scholar
[24]
Manafian J, Mohammadi Ivatloo B, Abapour M. Breather wave, periodic, and cross-kink solutions to the generalized Bogoyavlensky-Konopelchenko equation. Math Methods Appl Sci, 2020, 43(4): 1753–1774
CrossRef Google scholar
[25]
Manakov S V, Zakharov V E, Bordag L A, Its A R, Matveev V B. Two-dimensional solitons of the Kadomtsev-Petviashvili equation and their interaction. Phys Lett A, 1977, 63(3): 205–206
CrossRef Google scholar
[26]
Peng W Q, Tian S F, Zhang T T. Analysis on lump, lumpoff and rogue waves with predictability to the (2+1)-dimensional B-type Kadomtsev-Petviashvili equation. Phys Lett A, 2018, 382(38): 2701–2708
CrossRef Google scholar
[27]
Pouyanmehr R, Hosseini K, Ansari R, Alavi S H. Different wave structures to the (2+1)-dimensional generalized Bogoyavlensky-Konopelchenko equation. Int J Appl Comput Math, 2019, 5(6): 149
CrossRef Google scholar
[28]
Ray S S. On conservation laws by Lie symmetry analysis for (2+1)-dimensional Bogoyavlensky-Konopelchenko equation in wave propagation. Comput Math Appl, 2017, 74(6): 1158–1165
CrossRef Google scholar
[29]
Ren B, Ma W X, Yu J. Lump solutions for two mixed Calogero-Bogoyavlenskii-Schiff and Bogoyavlensky-Konopelchenko equations. Commun Theor Phys (Beijing), 2019, 71(6): 658–662
CrossRef Google scholar
[30]
Satsuma J, Ablowitz M J. Two-dimensional lumps in nonlinear dispersive systems. J Math Phys, 1979, 20(7): 1496–1503
CrossRef Google scholar
[31]
Stenflo L, Marklund M. Rogue waves in the atmosphere. J Plasma Phys, 2010, 76: 293–295
CrossRef Google scholar
[32]
Tan W, Dai Z D, Yin Z Y. Dynamics of multi-breathers, N-solitons and M-lump solutions in the (2+1)-dimensional KdV equation. Nonlinear Dynam, 2019, 96(2): 1605–1614
CrossRef Google scholar
[33]
Toda K, Yu S J. A study of the construction of equations in (2+1)dimensions. Inverse Problems, 2001, 17(4): 1053–1060
CrossRef Google scholar
[34]
Triki H, Jovanoski Z, Biswas A. Shock wave solutions to the Bogoyavlensky-Konopelchenko equation. Indian J Phys, 2014, 88(1): 71–74
CrossRef Google scholar
[35]
Wang D S, Wang X L. Long-time asymptotics and the bright N-soliton solutions of the Kundu-Eckhaus equation via the Riemann-Hilbert approach. Nonlinear Anal Real World Appl, 2018, 41: 334–361
CrossRef Google scholar
[36]
Wang L, Liu C, Wu X, Wang X, Sun W R. Dynamics of superregular breathers in the quintic nonlinear Schrödinger equation. Nonlinear Dynam, 2018, 94(2): 977–989
CrossRef Google scholar
[37]
Wang Y F, Tian B, Jiang Y. Soliton fusion and fission in a generalized variable-coefficient fifth-order Korteweg-de Vries equation in fluids. Appl Math Comput, 2017, 292: 448–456
CrossRef Google scholar
[38]
Wang Y L, Gao Y T, Jia S L, Deng G F, Hu W Q. Solitons for a (2+1)-dimensional variable-coefficient Bogoyavlensky-Konopelchenko equation in a fluid. Modern Phys Lett B, 2017, 31(25): 1750216
CrossRef Google scholar
[39]
Wazwaz A M. Negative-order integrable modified KdV equations of higher orders. Nonlinear Dynam, 2018, 93(3): 1371–1376
CrossRef Google scholar
[40]
Xu M J, Xia T C, Hu B B. Riemann-Hilbert approach and N-soliton solutions for the Chen-Lee-Liu equation. Modern Phys Lett B, 2019, 33(02): 1950002
CrossRef Google scholar
[41]
Yan H, Tian S F, Feng L L, Zhang T T. Quasi-periodic wave solutions, soliton solutions, and integrability to a (2+1)-dimensional generalized Bogoyavlensky-Konopelchenko equation. Wave Random Complex media, 2016, 26(4): 444–457
CrossRef Google scholar
[42]
Zhang H Q, Ma W X. Resonant multiple wave solutions for a (3+1)-dimensional non-linear evolution equation by linear superposition principle. Comput Math Appl, 2017, 73(10): 2339–2343
CrossRef Google scholar
[43]
Zhang W G, Zhao Y N, Chen A H. The elastic-fusion-coupled interaction for the Boussinesq equation and new soliton solutions of the KP equation. Appl Math Comput, 2015 259: 251–257
CrossRef Google scholar
[44]
Zhang W J, Xia T C. Solitary wave, M-lump and localized interaction solutions to the (4+1)-dimensional Fokas equation. Phys Scripta, 2020, 95(4): 045217
CrossRef Google scholar
[45]
Zhang Y, Liu Y P, Tang X Y. M-lump and interactive solutions to a (3+1)-dimensional nonlinear system. Nonlinear Dynam, 2018, 93(4): 2533–2541
CrossRef Google scholar
[46]
Zhou Y, Manukure S, Ma W X. Lump and lump-soliton solutions to the Hirota-Satsuma-Ito equation. Commun Nonlinear Sci Numer Simul, 2019, 68: 56–62
CrossRef Google scholar

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(731 KB)

Accesses

Citations

Detail

Sections
Recommended

/