RESEARCH ARTICLE

A generalization of silting modules and Tor-tilting modules

  • Lixin MAO
Expand
  • Department of Mathematics and Physics, Nanjing Institute of Technology, Nanjing 211167, China

Received date: 22 Dec 2020

Accepted date: 10 Mar 2021

Copyright

2022 Higher Education Press

Abstract

We introduce the concept of weak silting modules, which is a generalization of both silting modules and Tor-tilting modules. It is shown that W is a weak silting module if and only if its character module W+ is cosilting. Some properties of weak silting modules are given.

Cite this article

Lixin MAO . A generalization of silting modules and Tor-tilting modules[J]. Frontiers of Mathematics in China, 2022 , 17(4) : 715 -730 . DOI: 10.1007/s11464-021-0926-5

1
Adachi T , Iyama O , Reiten I . τ-tilting theory. Compos Math, 2014, 150: 415- 452

DOI

2
Anderson F W , Fuller K R . Rings and Categories of Modules. New York: Springer, 1974

DOI

3
Angeleri Hügel L . On the abundance of silting modules. In: Martsinkovsky A, Igusa K, Todorov G, eds. Surveys in Representation Theory of Algebras. Contemp Math, Vol 716. Providence: Amer Math Soc, 2018 1- 23

DOI

4
Angeleri Hügel L , Coelho F U . Infinitely generated tilting modules of finite projective dimension. Forum Math, 2001, 13: 239- 250

5
Angeleri Hügel L , Hrbek M . Silting modules over commutative rings. Int Math Res Not IMRN, 2017, 13: 4131- 4151

6
Angeleri Hügel L , Marks F , Vitória J . Silting modules. Int Math Res Not IMRN, 2016, 4: 1251- 1284

7
Breaz S , Pop F . Cosilting modules. Algebr Represent Theory, 2017, 20: 1305- 1321

DOI

8
Colby R R , Fuller K R . Tilting, cotilting, and serially tilted rings. Comm Algebra, 1990, 18 (5): 1585- 1615

DOI

9
Colpi R , Menini C . On the structure of *-modules. J Algebra, 1993, 158: 400- 419

DOI

10
Colpi R , Tonolo A , Trlifaj J . Partial cotilting modules and the lattices induced by them. Comm Algebra, 1997, 25 (10): 3225- 3237

DOI

11
Colpi R , Trlifaj J . Tilting modules and tilting torsion theories. J Algebra, 1995, 178: 492- 510

DOI

12
Enochs E E , Jenda O M G . Relative Homological Algebra. De Gruyter Exp Math, Vol 30. Berlin-New York: Walter de Gruyter, 2000

DOI

13
Fossum R M , Griffith P , Reiten I . Trivial Extensions of Abelian Categories: Homological Algebra of Trivial Extensions of Abelian Categories with Applications to Ring Theory. Lecture Notes in Math, Vol 456. Berlin: Springer-Verlag, 1975

14
Göbel R , Trlifaj J . Approximations and Endomorphism Algebras of Modules. De Gruyter Exp Math, Vol 41. Berlin-New York: Walter de Gruyter, 2006

DOI

15
Happel D , Ringel C . Tilted algebras. Trans Amer Math Soc, 1976, 215: 81- 98

DOI

16
Krylov P , Tuganbaev A . Formal Matrices. Algebr Appl, Vol 23. Cham: Springer, 2017

DOI

17
Marks F , Št'ovíček J . Universal localisations via silting. Proc Roy Soc Edinburgh Sect A, 2019, 149: 511- 532

DOI

18
Miyashita Y . Tilting modules of finite projective dimension. Math Z, 1986, 193: 113- 146

DOI

19
Pierce R S . The global dimension of Boolean rings. J Algebra, 1967, 7: 91- 99

DOI

20
Pop F . Finitely cosilting modules. arXiv: 1712.00817

21
Yang Y J , Yan X G , Zhu X S . Weak tilting modules. J Pure Appl Algebra, 2020, 224: 86- 97

DOI

22
Zhang P Y , Wei J Q . Cosilting complexes and AIR-cotilting modules. J Algebra, 2017, 491: 1- 31

DOI

23
Zhang X X , Yao L L . On a generalization of tilting modules. Comm Algebra, 2009, 37: 4316- 4324

DOI

Outlines

/