A generalization of silting modules and Tor-tilting modules

Lixin MAO

Front. Math. China ›› 2022, Vol. 17 ›› Issue (4) : 715 -730.

PDF (292KB)
Front. Math. China ›› 2022, Vol. 17 ›› Issue (4) : 715 -730. DOI: 10.1007/s11464-021-0926-5
RESEARCH ARTICLE
RESEARCH ARTICLE

A generalization of silting modules and Tor-tilting modules

Author information +
History +
PDF (292KB)

Abstract

We introduce the concept of weak silting modules, which is a generalization of both silting modules and Tor-tilting modules. It is shown that W is a weak silting module if and only if its character module W+ is cosilting. Some properties of weak silting modules are given.

Keywords

Silting module / cosilting module / weak silting module / Tor-tilting module

Cite this article

Download citation ▾
Lixin MAO. A generalization of silting modules and Tor-tilting modules. Front. Math. China, 2022, 17(4): 715-730 DOI:10.1007/s11464-021-0926-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adachi T , Iyama O , Reiten I . τ-tilting theory. Compos Math, 2014, 150: 415- 452

[2]

Anderson F W , Fuller K R . Rings and Categories of Modules. New York: Springer, 1974

[3]

Angeleri Hügel L . On the abundance of silting modules. In: Martsinkovsky A, Igusa K, Todorov G, eds. Surveys in Representation Theory of Algebras. Contemp Math, Vol 716. Providence: Amer Math Soc, 2018 1- 23

[4]

Angeleri Hügel L , Coelho F U . Infinitely generated tilting modules of finite projective dimension. Forum Math, 2001, 13: 239- 250

[5]

Angeleri Hügel L , Hrbek M . Silting modules over commutative rings. Int Math Res Not IMRN, 2017, 13: 4131- 4151

[6]

Angeleri Hügel L , Marks F , Vitória J . Silting modules. Int Math Res Not IMRN, 2016, 4: 1251- 1284

[7]

Breaz S , Pop F . Cosilting modules. Algebr Represent Theory, 2017, 20: 1305- 1321

[8]

Colby R R , Fuller K R . Tilting, cotilting, and serially tilted rings. Comm Algebra, 1990, 18 (5): 1585- 1615

[9]

Colpi R , Menini C . On the structure of *-modules. J Algebra, 1993, 158: 400- 419

[10]

Colpi R , Tonolo A , Trlifaj J . Partial cotilting modules and the lattices induced by them. Comm Algebra, 1997, 25 (10): 3225- 3237

[11]

Colpi R , Trlifaj J . Tilting modules and tilting torsion theories. J Algebra, 1995, 178: 492- 510

[12]

Enochs E E , Jenda O M G . Relative Homological Algebra. De Gruyter Exp Math, Vol 30. Berlin-New York: Walter de Gruyter, 2000

[13]

Fossum R M , Griffith P , Reiten I . Trivial Extensions of Abelian Categories: Homological Algebra of Trivial Extensions of Abelian Categories with Applications to Ring Theory. Lecture Notes in Math, Vol 456. Berlin: Springer-Verlag, 1975

[14]

Göbel R , Trlifaj J . Approximations and Endomorphism Algebras of Modules. De Gruyter Exp Math, Vol 41. Berlin-New York: Walter de Gruyter, 2006

[15]

Happel D , Ringel C . Tilted algebras. Trans Amer Math Soc, 1976, 215: 81- 98

[16]

Krylov P , Tuganbaev A . Formal Matrices. Algebr Appl, Vol 23. Cham: Springer, 2017

[17]

Marks F , Št'ovíček J . Universal localisations via silting. Proc Roy Soc Edinburgh Sect A, 2019, 149: 511- 532

[18]

Miyashita Y . Tilting modules of finite projective dimension. Math Z, 1986, 193: 113- 146

[19]

Pierce R S . The global dimension of Boolean rings. J Algebra, 1967, 7: 91- 99

[20]

Pop F . Finitely cosilting modules. arXiv: 1712.00817

[21]

Yang Y J , Yan X G , Zhu X S . Weak tilting modules. J Pure Appl Algebra, 2020, 224: 86- 97

[22]

Zhang P Y , Wei J Q . Cosilting complexes and AIR-cotilting modules. J Algebra, 2017, 491: 1- 31

[23]

Zhang X X , Yao L L . On a generalization of tilting modules. Comm Algebra, 2009, 37: 4316- 4324

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (292KB)

433

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/