A generalization of silting modules and Tor-tilting modules

Lixin MAO

PDF(292 KB)
PDF(292 KB)
Front. Math. China ›› 2022, Vol. 17 ›› Issue (4) : 715-730. DOI: 10.1007/s11464-021-0926-5
RESEARCH ARTICLE
RESEARCH ARTICLE

A generalization of silting modules and Tor-tilting modules

Author information +
History +

Abstract

We introduce the concept of weak silting modules, which is a generalization of both silting modules and Tor-tilting modules. It is shown that W is a weak silting module if and only if its character module W+ is cosilting. Some properties of weak silting modules are given.

Keywords

Silting module / cosilting module / weak silting module / Tor-tilting module

Cite this article

Download citation ▾
Lixin MAO. A generalization of silting modules and Tor-tilting modules. Front. Math. China, 2022, 17(4): 715‒730 https://doi.org/10.1007/s11464-021-0926-5

References

[1]
Adachi T , Iyama O , Reiten I . τ-tilting theory. Compos Math, 2014, 150: 415- 452
CrossRef Google scholar
[2]
Anderson F W , Fuller K R . Rings and Categories of Modules. New York: Springer, 1974
CrossRef Google scholar
[3]
Angeleri Hügel L . On the abundance of silting modules. In: Martsinkovsky A, Igusa K, Todorov G, eds. Surveys in Representation Theory of Algebras. Contemp Math, Vol 716. Providence: Amer Math Soc, 2018 1- 23
CrossRef Google scholar
[4]
Angeleri Hügel L , Coelho F U . Infinitely generated tilting modules of finite projective dimension. Forum Math, 2001, 13: 239- 250
[5]
Angeleri Hügel L , Hrbek M . Silting modules over commutative rings. Int Math Res Not IMRN, 2017, 13: 4131- 4151
[6]
Angeleri Hügel L , Marks F , Vitória J . Silting modules. Int Math Res Not IMRN, 2016, 4: 1251- 1284
[7]
Breaz S , Pop F . Cosilting modules. Algebr Represent Theory, 2017, 20: 1305- 1321
CrossRef Google scholar
[8]
Colby R R , Fuller K R . Tilting, cotilting, and serially tilted rings. Comm Algebra, 1990, 18 (5): 1585- 1615
CrossRef Google scholar
[9]
Colpi R , Menini C . On the structure of *-modules. J Algebra, 1993, 158: 400- 419
CrossRef Google scholar
[10]
Colpi R , Tonolo A , Trlifaj J . Partial cotilting modules and the lattices induced by them. Comm Algebra, 1997, 25 (10): 3225- 3237
CrossRef Google scholar
[11]
Colpi R , Trlifaj J . Tilting modules and tilting torsion theories. J Algebra, 1995, 178: 492- 510
CrossRef Google scholar
[12]
Enochs E E , Jenda O M G . Relative Homological Algebra. De Gruyter Exp Math, Vol 30. Berlin-New York: Walter de Gruyter, 2000
CrossRef Google scholar
[13]
Fossum R M , Griffith P , Reiten I . Trivial Extensions of Abelian Categories: Homological Algebra of Trivial Extensions of Abelian Categories with Applications to Ring Theory. Lecture Notes in Math, Vol 456. Berlin: Springer-Verlag, 1975
[14]
Göbel R , Trlifaj J . Approximations and Endomorphism Algebras of Modules. De Gruyter Exp Math, Vol 41. Berlin-New York: Walter de Gruyter, 2006
CrossRef Google scholar
[15]
Happel D , Ringel C . Tilted algebras. Trans Amer Math Soc, 1976, 215: 81- 98
CrossRef Google scholar
[16]
Krylov P , Tuganbaev A . Formal Matrices. Algebr Appl, Vol 23. Cham: Springer, 2017
CrossRef Google scholar
[17]
Marks F , Št'ovíček J . Universal localisations via silting. Proc Roy Soc Edinburgh Sect A, 2019, 149: 511- 532
CrossRef Google scholar
[18]
Miyashita Y . Tilting modules of finite projective dimension. Math Z, 1986, 193: 113- 146
CrossRef Google scholar
[19]
Pierce R S . The global dimension of Boolean rings. J Algebra, 1967, 7: 91- 99
CrossRef Google scholar
[20]
Pop F . Finitely cosilting modules. arXiv: 1712.00817
[21]
Yang Y J , Yan X G , Zhu X S . Weak tilting modules. J Pure Appl Algebra, 2020, 224: 86- 97
CrossRef Google scholar
[22]
Zhang P Y , Wei J Q . Cosilting complexes and AIR-cotilting modules. J Algebra, 2017, 491: 1- 31
CrossRef Google scholar
[23]
Zhang X X , Yao L L . On a generalization of tilting modules. Comm Algebra, 2009, 37: 4316- 4324
CrossRef Google scholar

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(292 KB)

Accesses

Citations

Detail

Sections
Recommended

/