A generalization of silting modules and Tor-tilting modules
Lixin MAO
A generalization of silting modules and Tor-tilting modules
We introduce the concept of weak silting modules, which is a generalization of both silting modules and Tor-tilting modules. It is shown that W is a weak silting module if and only if its character module W+ is cosilting. Some properties of weak silting modules are given.
Silting module / cosilting module / weak silting module / Tor-tilting module
[1] |
Adachi T , Iyama O , Reiten I . τ-tilting theory. Compos Math, 2014, 150: 415- 452
CrossRef
Google scholar
|
[2] |
Anderson F W , Fuller K R . Rings and Categories of Modules. New York: Springer, 1974
CrossRef
Google scholar
|
[3] |
Angeleri Hügel L . On the abundance of silting modules. In: Martsinkovsky A, Igusa K, Todorov G, eds. Surveys in Representation Theory of Algebras. Contemp Math, Vol 716. Providence: Amer Math Soc, 2018 1- 23
CrossRef
Google scholar
|
[4] |
Angeleri Hügel L , Coelho F U . Infinitely generated tilting modules of finite projective dimension. Forum Math, 2001, 13: 239- 250
|
[5] |
Angeleri Hügel L , Hrbek M . Silting modules over commutative rings. Int Math Res Not IMRN, 2017, 13: 4131- 4151
|
[6] |
Angeleri Hügel L , Marks F , Vitória J . Silting modules. Int Math Res Not IMRN, 2016, 4: 1251- 1284
|
[7] |
Breaz S , Pop F . Cosilting modules. Algebr Represent Theory, 2017, 20: 1305- 1321
CrossRef
Google scholar
|
[8] |
Colby R R , Fuller K R . Tilting, cotilting, and serially tilted rings. Comm Algebra, 1990, 18 (5): 1585- 1615
CrossRef
Google scholar
|
[9] |
Colpi R , Menini C . On the structure of *-modules. J Algebra, 1993, 158: 400- 419
CrossRef
Google scholar
|
[10] |
Colpi R , Tonolo A , Trlifaj J . Partial cotilting modules and the lattices induced by them. Comm Algebra, 1997, 25 (10): 3225- 3237
CrossRef
Google scholar
|
[11] |
Colpi R , Trlifaj J . Tilting modules and tilting torsion theories. J Algebra, 1995, 178: 492- 510
CrossRef
Google scholar
|
[12] |
Enochs E E , Jenda O M G . Relative Homological Algebra. De Gruyter Exp Math, Vol 30. Berlin-New York: Walter de Gruyter, 2000
CrossRef
Google scholar
|
[13] |
Fossum R M , Griffith P , Reiten I . Trivial Extensions of Abelian Categories: Homological Algebra of Trivial Extensions of Abelian Categories with Applications to Ring Theory. Lecture Notes in Math, Vol 456. Berlin: Springer-Verlag, 1975
|
[14] |
Göbel R , Trlifaj J . Approximations and Endomorphism Algebras of Modules. De Gruyter Exp Math, Vol 41. Berlin-New York: Walter de Gruyter, 2006
CrossRef
Google scholar
|
[15] |
Happel D , Ringel C . Tilted algebras. Trans Amer Math Soc, 1976, 215: 81- 98
CrossRef
Google scholar
|
[16] |
Krylov P , Tuganbaev A . Formal Matrices. Algebr Appl, Vol 23. Cham: Springer, 2017
CrossRef
Google scholar
|
[17] |
Marks F , Št'ovíček J . Universal localisations via silting. Proc Roy Soc Edinburgh Sect A, 2019, 149: 511- 532
CrossRef
Google scholar
|
[18] |
Miyashita Y . Tilting modules of finite projective dimension. Math Z, 1986, 193: 113- 146
CrossRef
Google scholar
|
[19] |
Pierce R S . The global dimension of Boolean rings. J Algebra, 1967, 7: 91- 99
CrossRef
Google scholar
|
[20] |
Pop F . Finitely cosilting modules. arXiv: 1712.00817
|
[21] |
Yang Y J , Yan X G , Zhu X S . Weak tilting modules. J Pure Appl Algebra, 2020, 224: 86- 97
CrossRef
Google scholar
|
[22] |
Zhang P Y , Wei J Q . Cosilting complexes and AIR-cotilting modules. J Algebra, 2017, 491: 1- 31
CrossRef
Google scholar
|
[23] |
Zhang X X , Yao L L . On a generalization of tilting modules. Comm Algebra, 2009, 37: 4316- 4324
CrossRef
Google scholar
|
/
〈 | 〉 |