RESEARCH ARTICLE

Fast algorithm for viscous Cahn-Hilliard equation

  • Danxia WANG ,
  • Yaqian LI ,
  • Xingxing WANG ,
  • Hongen JIA
Expand
  • College of Mathematics, Taiyuan University of Technology, Taiyuan 030024, China

Received date: 07 Mar 2020

Accepted date: 25 Aug 2021

Copyright

2022 Higher Education Press

Abstract

The main purpose of this paper is to solve the viscous Cahn-Hilliard equation via a fast algorithm based on the two time-mesh (TT-M) finite element (FE) method to ease the problem caused by strong nonlinearities. The TT-M FE algorithm includes the following main computing steps. First, a nonlinear FE method is applied on a coarse time-mesh τc. Here, the FE method is used for spatial discretization and the implicit second-order θ scheme (containing both implicit Crank-Nicolson and second-order backward difference) is used for temporal discretization. Second, based on the chosen initial iterative value, a linearized FE system on time fine mesh is solved, where some useful coarse numerical solutions are found by Lagrange’s interpolation formula. The analysis for both stability and a priori error estimates is made in detail. Numerical examples are given to demonstrate the validity of the proposed algorithm. Our algorithm is compared with the traditional Galerkin FE method and it is evident that our fast algorithm can save computational time.

Cite this article

Danxia WANG , Yaqian LI , Xingxing WANG , Hongen JIA . Fast algorithm for viscous Cahn-Hilliard equation[J]. Frontiers of Mathematics in China, 2022 , 17(4) : 689 -713 . DOI: 10.1007/s11464-021-0974-x

1
Ayuso B , García-Archilla B , Novo J . The postprocessed mixed finite element method for the Navier-Stokes equations. SIAM J Numer Anal, 2005, 43 (3): 1091- 1111

DOI

2
Bertozzi A L , Esedoglu S , Gillette A . Inpainting of binary images using the Cahn-Hilliard equation. IEEE Trans Image Process, 2006, 16 (1): 285- 291

DOI

3
Cahn J W . Free energy of a nonuniform system II: Thermodynamic basis. J Chem Phys, 1959, 30 (5): 1121- 1124

DOI

4
Cahn J W , Hilliard J E . Free energy of a nonuniform system I: Interfacial free energy. J Chem Phys, 1958, 28 (2): 258- 267

DOI

5
Cahn J W , Hilliard J E . Free energy of a nonuniform system III: Nucleation in a two component incompressible fluid. J Chem Phys, 1959, 31 (3): 688- 699

DOI

6
Carolan D , Chong H M , Ivankovic A , Kinloch A J , Taylor A C . Co-continuous polymer systems: A numerical investigation. Comp Mater Sci, 2015, 98: 24- 33

DOI

7
Chen C J , Li K , Chen Y P , Huang Y Q . Two-grid finite element methods combined with Crank-Nicolson scheme for nonlinear Sobolev equations. Adv Comput Math, 2019, 45: 611- 630

DOI

8
Choksi R , Peletier M A , Williams J F . On the phase diagram for microphase separation of diblock copolymers: an approach via a nonlocal Cahn-Hilliard functional. SIAM J Appl Math, 2009, 69 (6): 1712- 1738

DOI

9
Elliott C M , Stuart A M . Viscous Cahn-Hilliard equation II. Analysis. J Differential Equations, 1996, 128 (2): 387- 414

DOI

10
Galenko P . Phase-field models with relaxation of the diffusion flux in nonequilibrium solidification of a binary system. Phys Lett A, 2001, 287 (3-4): 190- 197

DOI

11
Galenko P , Jou D . Diffuse-interface model for rapid phase transformations in nonequilibrium systems.. Phys Rev E, 2005, 71 (4 Pt 2): 046125

DOI

12
Galenko P , Jou D . Kinetic contribution to the fast spinodal decomposition controlled by diffusion. Phys A, 2009, 388 (15-16): 3113- 3123

DOI

13
Galenko P , Lebedev V . Analysis of the dispersion relation in spinodal decomposition of a binary system. Phil Mag Lett, 2007, 87 (11): 821- 827

DOI

14
Galenko P , Lebedev V . Local nonequilibrium effect on spinodal decomposition in a binary system. Int J Thermophys, 2008, 11 (1): 21- 28

DOI

15
Galenko P , Lebedev V . Non-equilibrium effects in spinodal decomposition of a binary system. Phys Lett A, 2008, 372 (7): 985- 989

DOI

16
Gao G H , Sun H W , Sun Z Z . Stability and convergence of finite difference schemes for a class of time-fractional sub-diffusion equations based on certain superconvergence. J Comput Phys, 2015, 280: 510- 528

DOI

17
He Y N , Liu Y X , Tang T . On large time-stepping methods for the Cahn-Hilliard equation. Appl Numer Math, 2007, 57(5-7): 616- 628

DOI

18
Hecht F , Pironneau O , Ohtsuka K . FreeFEM++. 2010, www.freefem.org/ff++/

19
Heida M . On the derivation of thermodynamically consistent boundary conditions for the Cahn-Hilliard-Navier-Stokes system. Internat J Engrg Sci, 2013, 62 (1): 126- 156

DOI

20
Ju L L , Zhang J , Du Q . Fast and accurate algorithms for simulating coarsening dynamics of Cahn-Hilliard equations. Comput Mater Sci, 2015: 272- 282

DOI

21
Kania M B . Upper semicontinuity of global attractors for the perturbed viscous CahnHilliard equations. Topol Methods Nonlinear Anal, 2008, 32 (2): 327- 345

22
Layton W , Tobiska L . A two-level method with backtracking for the Navier-Stokes equations. SIAM J Numer Anal, 1998, 35 (5): 2035- 2054

DOI

23
Lecoq N , Zapolsky H , Galenko P . Evolution of the structure factor in a hyperbolic model of spinodal decomposition. Eur Phys J Spec Top, 2009, 177 (1): 165- 175

DOI

24
Li Y B , Choi J I , Kim J . A phase-field fluid modeling and computation with interfacial profile correction term.. Commun Nonlinear Sci Numer Simul, 2016, 30 (1-3): 84- 100

DOI

25
Li Y B , Choi J I , Kim J . Multi-component Cahn-Hilliard system with different boundary conditions in complex domains. J Comput Phys, 2016, 323: 1- 16

DOI

26
Li Y B , Shin J , Choi Y , Kim J . Three-dimensional volume reconstruction from slice data using phase-field models. Comput Vis Image Underst, 2015, 137: 115- 124

DOI

27
Liu Q F , Hou Y R , Wang Z H , Zhao J K . Two-level methods for the Cahn-Hilliard equation. Math Comput Simulation, 2016, 126 (8): 89- 103

DOI

28
Liu Y , Du Y W , Li H , Liu F W , Wang Y J . Some second-order θ schemes combined with finite element method for nonlinear fractional cable equation. Numer Algorithms, 2019, 80 (2): 533- 555

DOI

29
Liu Y , Yu Z D , Li H , Liu F W , Wang J F . Time two-mesh algorithm combined with finite element method for time fractional water wave model. Int J Heat Mass Tran, 2018, 120 (5): 1132- 1145

DOI

30
Marion M , Xu J C . Error estimates on a new nonlinear Galerkin method based on two-grid finite elements. SIAM J Numer Anal, 1995, 32 (4): 1170- 1184

DOI

31
Novick-Cohen A . On the viscous Cahn-Hilliard equation. In: Ball J M, ed. Material Instabilities in Continuum Mechanics and Related Mathematical Problems. Oxford: Oxford Univ Press, 1988 329- 342

32
Scala R , Schimperna G . On the viscous Cahn-Hilliard equation with singular potential and inertial term. AIMS Math, 2016, 1 (1): 64- 76

DOI

33
Shang Y Q . A two-level subgrid stabilized Oseen iterative method for the steady Navier-Stokes equations. J Comput Phys, 2013, 233 (1): 210- 226

DOI

34
Shen J , Yang X F . Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discrete Contin Dyn Syst, 2010, 28 (4): 1669- 1691

DOI

35
Wang D X , Du Q Q , Zhang J W , Jia H E . A fast time two-mesh algorithm for Allen-Cahn equation. Bull Malays Math Sci Soc, 2019, 43 (3): 1- 25

DOI

36
Wang L , Yu H J . Convergence analysis of an unconditionally energy stable linear Crank-Nicolson scheme for the Cahn-Hilliard equation. 2018, 51 (1): 89- 114

DOI

37
Wang Y J , Liu Y , Li H , Wang J F . Finite element method combined with second-order time discrete scheme for nonlinear fractional cable equation. Eur Phys J Plus, 2016, 131 (3): 1- 16

DOI

38
Wise S M , Lowengrub J S , Frieboes H B , Cristini V . Three-dimensional multispecies nonlinear tumor growth—I: model and numerical method. J Theoret Biol, 2008, 253 (3): 524- 543

DOI

39
Xu J C . Two-grid discretization technique for linear and nonlinear PDEs. SIAM J Numer Anal, 1996, 33 (5): 1759- 1777

DOI

40
Yang X F , Zhao J , He X M . Linear, second order and unconditionally energy stable schemes for the viscous Cahn-Hilliard equation with hyperbolic relaxation using the invariant energy quadratization method. J Comput Appl Math, 2018, 343: 80- 97

DOI

41
Yin B L , Liu Y , Li H , He S . Fast algorithm based on TT-M FE system for space fractional Allen-Cahn equations with smooth and non-smooth solutions. J Comput Phys, 2019, 379: 351- 372

DOI

42
Zaeem M A , Kadiri H E , Horstemeyer M F , Khafizov M , Utegulov Z . Effects of internal stresses and intermediate phases on the coarsening of coherent precipitates: A phase-field study. Curr Appl Phys, 2012, 12 (2): 570- 580

DOI

43
Zhang Z R , Qiao Z H . An adaptive time-stepping strategy for the Cahn-Hilliard equation. Commun Comput Phys, 2012, 11 (4): 1261- 1278

DOI

44
Zheng S , Milani A . Global attractors for singular perturbations of the Cahn-Hilliard equations. J Differential Equations, 2005, 209 (1): 101- 139

DOI

45
Zhou S W , Wang M Y . Multimaterial structural topology optimization with a generalized Cahn-Hilliard model of multiphase transition. Struct Multidiscip Optim, 2007, 33 (2): 89- 111

Outlines

/