Fast algorithm for viscous Cahn-Hilliard equation

Danxia WANG, Yaqian LI, Xingxing WANG, Hongen JIA

PDF(373 KB)
PDF(373 KB)
Front. Math. China ›› 2022, Vol. 17 ›› Issue (4) : 689-713. DOI: 10.1007/s11464-021-0974-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Fast algorithm for viscous Cahn-Hilliard equation

Author information +
History +

Abstract

The main purpose of this paper is to solve the viscous Cahn-Hilliard equation via a fast algorithm based on the two time-mesh (TT-M) finite element (FE) method to ease the problem caused by strong nonlinearities. The TT-M FE algorithm includes the following main computing steps. First, a nonlinear FE method is applied on a coarse time-mesh τc. Here, the FE method is used for spatial discretization and the implicit second-order θ scheme (containing both implicit Crank-Nicolson and second-order backward difference) is used for temporal discretization. Second, based on the chosen initial iterative value, a linearized FE system on time fine mesh is solved, where some useful coarse numerical solutions are found by Lagrange’s interpolation formula. The analysis for both stability and a priori error estimates is made in detail. Numerical examples are given to demonstrate the validity of the proposed algorithm. Our algorithm is compared with the traditional Galerkin FE method and it is evident that our fast algorithm can save computational time.

Keywords

Fast algorithm / two time-mesh (TT-M) finite element (FE) method / viscous Cahn-Hilliard equation / stability / CPU time

Cite this article

Download citation ▾
Danxia WANG, Yaqian LI, Xingxing WANG, Hongen JIA. Fast algorithm for viscous Cahn-Hilliard equation. Front. Math. China, 2022, 17(4): 689‒713 https://doi.org/10.1007/s11464-021-0974-x

References

[1]
Ayuso B , García-Archilla B , Novo J . The postprocessed mixed finite element method for the Navier-Stokes equations. SIAM J Numer Anal, 2005, 43 (3): 1091- 1111
CrossRef Google scholar
[2]
Bertozzi A L , Esedoglu S , Gillette A . Inpainting of binary images using the Cahn-Hilliard equation. IEEE Trans Image Process, 2006, 16 (1): 285- 291
CrossRef Google scholar
[3]
Cahn J W . Free energy of a nonuniform system II: Thermodynamic basis. J Chem Phys, 1959, 30 (5): 1121- 1124
CrossRef Google scholar
[4]
Cahn J W , Hilliard J E . Free energy of a nonuniform system I: Interfacial free energy. J Chem Phys, 1958, 28 (2): 258- 267
CrossRef Google scholar
[5]
Cahn J W , Hilliard J E . Free energy of a nonuniform system III: Nucleation in a two component incompressible fluid. J Chem Phys, 1959, 31 (3): 688- 699
CrossRef Google scholar
[6]
Carolan D , Chong H M , Ivankovic A , Kinloch A J , Taylor A C . Co-continuous polymer systems: A numerical investigation. Comp Mater Sci, 2015, 98: 24- 33
CrossRef Google scholar
[7]
Chen C J , Li K , Chen Y P , Huang Y Q . Two-grid finite element methods combined with Crank-Nicolson scheme for nonlinear Sobolev equations. Adv Comput Math, 2019, 45: 611- 630
CrossRef Google scholar
[8]
Choksi R , Peletier M A , Williams J F . On the phase diagram for microphase separation of diblock copolymers: an approach via a nonlocal Cahn-Hilliard functional. SIAM J Appl Math, 2009, 69 (6): 1712- 1738
CrossRef Google scholar
[9]
Elliott C M , Stuart A M . Viscous Cahn-Hilliard equation II. Analysis. J Differential Equations, 1996, 128 (2): 387- 414
CrossRef Google scholar
[10]
Galenko P . Phase-field models with relaxation of the diffusion flux in nonequilibrium solidification of a binary system. Phys Lett A, 2001, 287 (3-4): 190- 197
CrossRef Google scholar
[11]
Galenko P , Jou D . Diffuse-interface model for rapid phase transformations in nonequilibrium systems.. Phys Rev E, 2005, 71 (4 Pt 2): 046125
CrossRef Google scholar
[12]
Galenko P , Jou D . Kinetic contribution to the fast spinodal decomposition controlled by diffusion. Phys A, 2009, 388 (15-16): 3113- 3123
CrossRef Google scholar
[13]
Galenko P , Lebedev V . Analysis of the dispersion relation in spinodal decomposition of a binary system. Phil Mag Lett, 2007, 87 (11): 821- 827
CrossRef Google scholar
[14]
Galenko P , Lebedev V . Local nonequilibrium effect on spinodal decomposition in a binary system. Int J Thermophys, 2008, 11 (1): 21- 28
CrossRef Google scholar
[15]
Galenko P , Lebedev V . Non-equilibrium effects in spinodal decomposition of a binary system. Phys Lett A, 2008, 372 (7): 985- 989
CrossRef Google scholar
[16]
Gao G H , Sun H W , Sun Z Z . Stability and convergence of finite difference schemes for a class of time-fractional sub-diffusion equations based on certain superconvergence. J Comput Phys, 2015, 280: 510- 528
CrossRef Google scholar
[17]
He Y N , Liu Y X , Tang T . On large time-stepping methods for the Cahn-Hilliard equation. Appl Numer Math, 2007, 57(5-7): 616- 628
CrossRef Google scholar
[18]
Hecht F , Pironneau O , Ohtsuka K . FreeFEM++. 2010, www.freefem.org/ff++/
[19]
Heida M . On the derivation of thermodynamically consistent boundary conditions for the Cahn-Hilliard-Navier-Stokes system. Internat J Engrg Sci, 2013, 62 (1): 126- 156
CrossRef Google scholar
[20]
Ju L L , Zhang J , Du Q . Fast and accurate algorithms for simulating coarsening dynamics of Cahn-Hilliard equations. Comput Mater Sci, 2015: 272- 282
CrossRef Google scholar
[21]
Kania M B . Upper semicontinuity of global attractors for the perturbed viscous CahnHilliard equations. Topol Methods Nonlinear Anal, 2008, 32 (2): 327- 345
[22]
Layton W , Tobiska L . A two-level method with backtracking for the Navier-Stokes equations. SIAM J Numer Anal, 1998, 35 (5): 2035- 2054
CrossRef Google scholar
[23]
Lecoq N , Zapolsky H , Galenko P . Evolution of the structure factor in a hyperbolic model of spinodal decomposition. Eur Phys J Spec Top, 2009, 177 (1): 165- 175
CrossRef Google scholar
[24]
Li Y B , Choi J I , Kim J . A phase-field fluid modeling and computation with interfacial profile correction term.. Commun Nonlinear Sci Numer Simul, 2016, 30 (1-3): 84- 100
CrossRef Google scholar
[25]
Li Y B , Choi J I , Kim J . Multi-component Cahn-Hilliard system with different boundary conditions in complex domains. J Comput Phys, 2016, 323: 1- 16
CrossRef Google scholar
[26]
Li Y B , Shin J , Choi Y , Kim J . Three-dimensional volume reconstruction from slice data using phase-field models. Comput Vis Image Underst, 2015, 137: 115- 124
CrossRef Google scholar
[27]
Liu Q F , Hou Y R , Wang Z H , Zhao J K . Two-level methods for the Cahn-Hilliard equation. Math Comput Simulation, 2016, 126 (8): 89- 103
CrossRef Google scholar
[28]
Liu Y , Du Y W , Li H , Liu F W , Wang Y J . Some second-order θ schemes combined with finite element method for nonlinear fractional cable equation. Numer Algorithms, 2019, 80 (2): 533- 555
CrossRef Google scholar
[29]
Liu Y , Yu Z D , Li H , Liu F W , Wang J F . Time two-mesh algorithm combined with finite element method for time fractional water wave model. Int J Heat Mass Tran, 2018, 120 (5): 1132- 1145
CrossRef Google scholar
[30]
Marion M , Xu J C . Error estimates on a new nonlinear Galerkin method based on two-grid finite elements. SIAM J Numer Anal, 1995, 32 (4): 1170- 1184
CrossRef Google scholar
[31]
Novick-Cohen A . On the viscous Cahn-Hilliard equation. In: Ball J M, ed. Material Instabilities in Continuum Mechanics and Related Mathematical Problems. Oxford: Oxford Univ Press, 1988 329- 342
[32]
Scala R , Schimperna G . On the viscous Cahn-Hilliard equation with singular potential and inertial term. AIMS Math, 2016, 1 (1): 64- 76
CrossRef Google scholar
[33]
Shang Y Q . A two-level subgrid stabilized Oseen iterative method for the steady Navier-Stokes equations. J Comput Phys, 2013, 233 (1): 210- 226
CrossRef Google scholar
[34]
Shen J , Yang X F . Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discrete Contin Dyn Syst, 2010, 28 (4): 1669- 1691
CrossRef Google scholar
[35]
Wang D X , Du Q Q , Zhang J W , Jia H E . A fast time two-mesh algorithm for Allen-Cahn equation. Bull Malays Math Sci Soc, 2019, 43 (3): 1- 25
CrossRef Google scholar
[36]
Wang L , Yu H J . Convergence analysis of an unconditionally energy stable linear Crank-Nicolson scheme for the Cahn-Hilliard equation. 2018, 51 (1): 89- 114
CrossRef Google scholar
[37]
Wang Y J , Liu Y , Li H , Wang J F . Finite element method combined with second-order time discrete scheme for nonlinear fractional cable equation. Eur Phys J Plus, 2016, 131 (3): 1- 16
CrossRef Google scholar
[38]
Wise S M , Lowengrub J S , Frieboes H B , Cristini V . Three-dimensional multispecies nonlinear tumor growth—I: model and numerical method. J Theoret Biol, 2008, 253 (3): 524- 543
CrossRef Google scholar
[39]
Xu J C . Two-grid discretization technique for linear and nonlinear PDEs. SIAM J Numer Anal, 1996, 33 (5): 1759- 1777
CrossRef Google scholar
[40]
Yang X F , Zhao J , He X M . Linear, second order and unconditionally energy stable schemes for the viscous Cahn-Hilliard equation with hyperbolic relaxation using the invariant energy quadratization method. J Comput Appl Math, 2018, 343: 80- 97
CrossRef Google scholar
[41]
Yin B L , Liu Y , Li H , He S . Fast algorithm based on TT-M FE system for space fractional Allen-Cahn equations with smooth and non-smooth solutions. J Comput Phys, 2019, 379: 351- 372
CrossRef Google scholar
[42]
Zaeem M A , Kadiri H E , Horstemeyer M F , Khafizov M , Utegulov Z . Effects of internal stresses and intermediate phases on the coarsening of coherent precipitates: A phase-field study. Curr Appl Phys, 2012, 12 (2): 570- 580
CrossRef Google scholar
[43]
Zhang Z R , Qiao Z H . An adaptive time-stepping strategy for the Cahn-Hilliard equation. Commun Comput Phys, 2012, 11 (4): 1261- 1278
CrossRef Google scholar
[44]
Zheng S , Milani A . Global attractors for singular perturbations of the Cahn-Hilliard equations. J Differential Equations, 2005, 209 (1): 101- 139
CrossRef Google scholar
[45]
Zhou S W , Wang M Y . Multimaterial structural topology optimization with a generalized Cahn-Hilliard model of multiphase transition. Struct Multidiscip Optim, 2007, 33 (2): 89- 111

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(373 KB)

Accesses

Citations

Detail

Sections
Recommended

/