Frontiers of Mathematics in China >
Upper bound of Kähler angles on the β-symplectic critical surfaces
Copyright
Let be a Kähler surface and be a -symplectic critical surface in . If is bounded for some , then we give a uniform upper bound for the Kähler angle on . This bound only depends on and the functional of . For , this estimate is known and we extend the scope of .
Yuxia ZHANG , Xiangrong ZHU . Upper bound of Kähler angles on the β-symplectic critical surfaces[J]. Frontiers of Mathematics in China, 2022 , 17(4) : 511 -519 . DOI: 10.1007/s11464-022-1020-3
1 |
Arezzo C. Minimal surfaces and deformations of holomorphic curves in Kähler-Einstein manifolds. Ann Scuola Norm Sup Pisa Cl Sci 2000; 29(2): 473–481
|
2 |
Chern S S, Wolfson J. Minimal surfaces by moving frames. Amer J Math 1983; 105(1): 59–83
|
3 |
Han X L, Li J Y. Symplectic critical surfaces in Kähler surfaces. J Eur Math Soc 2010; 12(2): 505–527
|
4 |
Han X L, Li J Y. The second variation of the functional L of symplectic criticalsurfaces in Kähler surfaces. Commun Math Stat 2014; 2(3−4): 311–330
|
5 |
Han X L, Li J Y, Sun J. The deformation of symplectic critical surfaces in a Kählersurface-Ⅰ. Int Math Res Not IMRN 2018; 20: 6290–6328
|
6 |
Han X L, Li J Y, Sun J. The deformation of symplectic critical surfaces in a Kählersurface-Ⅱ– compactness. Calc Var Partial Differential Equations 2017; 56(3): 1–22
|
7 |
Michael J H, Simon L M. Sobolev and mean-value inequalities on generalized submanifolds of Rn. Comm Pure Appl Math 1973; 26: 361–379
|
8 |
Micallef M, Wolfson J. The second variation of area of minimal surfaces in fourmanifolds. Math Ann 1993; 295(2): 245–267
|
9 |
Webster S M. Minimal surfaces in a Kähler surface. J Differential Geom 1984; 20(2): 463–470
|
10 |
Wolfson J. Minimal surfaces in Kähler surfaces and Ricci curvature. J Differential Geom 1989; 29(2): 281–294
|
11 |
Wolfson J. On minimal surfaces in a Kähler manifold of constant holomorphic sectional curvature. Trans Amer Math Soc 1985; 290(2): 627–646
|
/
〈 | 〉 |