RESEARCH ARTICLE

Upper bound of Kähler angles on the β-symplectic critical surfaces

  • Yuxia ZHANG ,
  • Xiangrong ZHU
Expand
  • College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua 321004, China

Copyright

2022 Higher Education Press

Abstract

Let (M,g) be a Kähler surface and Σ be a β-symplectic critical surface in M. If Lq(Σ) is bounded for some q>3, then we give a uniform upper bound for the Kähler angle on Σ. This bound only depends on M,q,β and the Lq functional of Σ. For q>4, this estimate is known and we extend the scope of q.

Cite this article

Yuxia ZHANG , Xiangrong ZHU . Upper bound of Kähler angles on the β-symplectic critical surfaces[J]. Frontiers of Mathematics in China, 2022 , 17(4) : 511 -519 . DOI: 10.1007/s11464-022-1020-3

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11871436).
1
Arezzo C. Minimal surfaces and deformations of holomorphic curves in Kähler-Einstein manifolds. Ann Scuola Norm Sup Pisa Cl Sci 2000; 29(2): 473–481

2
Chern S S, Wolfson J. Minimal surfaces by moving frames. Amer J Math 1983; 105(1): 59–83

3
Han X L, Li J Y. Symplectic critical surfaces in Kähler surfaces. J Eur Math Soc 2010; 12(2): 505–527

4
Han X L, Li J Y. The second variation of the functional L of symplectic criticalsurfaces in Kähler surfaces. Commun Math Stat 2014; 2(3−4): 311–330

5
Han X L, Li J Y, Sun J. The deformation of symplectic critical surfaces in a Kählersurface-Ⅰ. Int Math Res Not IMRN 2018; 20: 6290–6328

6
Han X L, Li J Y, Sun J. The deformation of symplectic critical surfaces in a Kählersurface-Ⅱ– compactness. Calc Var Partial Differential Equations 2017; 56(3): 1–22

7
Michael J H, Simon L M. Sobolev and mean-value inequalities on generalized submanifolds of Rn. Comm Pure Appl Math 1973; 26: 361–379

8
Micallef M, Wolfson J. The second variation of area of minimal surfaces in fourmanifolds. Math Ann 1993; 295(2): 245–267

9
Webster S M. Minimal surfaces in a Kähler surface. J Differential Geom 1984; 20(2): 463–470

10
Wolfson J. Minimal surfaces in Kähler surfaces and Ricci curvature. J Differential Geom 1989; 29(2): 281–294

11
Wolfson J. On minimal surfaces in a Kähler manifold of constant holomorphic sectional curvature. Trans Amer Math Soc 1985; 290(2): 627–646

Outlines

/