Upper bound of Kähler angles on the β-symplectic critical surfaces
Yuxia ZHANG, Xiangrong ZHU
Upper bound of Kähler angles on the β-symplectic critical surfaces
Let be a Kähler surface and be a -symplectic critical surface in . If is bounded for some , then we give a uniform upper bound for the Kähler angle on . This bound only depends on and the functional of . For , this estimate is known and we extend the scope of .
Kähler surface / β-symplectic critical surfaces / Kähler angle / Lβ functional
[1] |
Arezzo C. Minimal surfaces and deformations of holomorphic curves in Kähler-Einstein manifolds. Ann Scuola Norm Sup Pisa Cl Sci 2000; 29(2): 473–481
|
[2] |
Chern S S, Wolfson J. Minimal surfaces by moving frames. Amer J Math 1983; 105(1): 59–83
|
[3] |
Han X L, Li J Y. Symplectic critical surfaces in Kähler surfaces. J Eur Math Soc 2010; 12(2): 505–527
|
[4] |
Han X L, Li J Y. The second variation of the functional L of symplectic criticalsurfaces in Kähler surfaces. Commun Math Stat 2014; 2(3−4): 311–330
|
[5] |
Han X L, Li J Y, Sun J. The deformation of symplectic critical surfaces in a Kählersurface-Ⅰ. Int Math Res Not IMRN 2018; 20: 6290–6328
|
[6] |
Han X L, Li J Y, Sun J. The deformation of symplectic critical surfaces in a Kählersurface-Ⅱ– compactness. Calc Var Partial Differential Equations 2017; 56(3): 1–22
|
[7] |
Michael J H, Simon L M. Sobolev and mean-value inequalities on generalized submanifolds of Rn. Comm Pure Appl Math 1973; 26: 361–379
|
[8] |
Micallef M, Wolfson J. The second variation of area of minimal surfaces in fourmanifolds. Math Ann 1993; 295(2): 245–267
|
[9] |
Webster S M. Minimal surfaces in a Kähler surface. J Differential Geom 1984; 20(2): 463–470
|
[10] |
Wolfson J. Minimal surfaces in Kähler surfaces and Ricci curvature. J Differential Geom 1989; 29(2): 281–294
|
[11] |
Wolfson J. On minimal surfaces in a Kähler manifold of constant holomorphic sectional curvature. Trans Amer Math Soc 1985; 290(2): 627–646
|
/
〈 | 〉 |