Upper bound of Kähler angles on the β-symplectic critical surfaces

Yuxia ZHANG, Xiangrong ZHU

PDF(447 KB)
PDF(447 KB)
Front. Math. China ›› 2022, Vol. 17 ›› Issue (4) : 511-519. DOI: 10.1007/s11464-022-1020-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Upper bound of Kähler angles on the β-symplectic critical surfaces

Author information +
History +

Abstract

Let (M,g) be a Kähler surface and Σ be a β-symplectic critical surface in M. If Lq(Σ) is bounded for some q>3, then we give a uniform upper bound for the Kähler angle on Σ. This bound only depends on M,q,β and the Lq functional of Σ. For q>4, this estimate is known and we extend the scope of q.

Keywords

Kähler surface / β-symplectic critical surfaces / Kähler angle / Lβ functional

Cite this article

Download citation ▾
Yuxia ZHANG, Xiangrong ZHU. Upper bound of Kähler angles on the β-symplectic critical surfaces. Front. Math. China, 2022, 17(4): 511‒519 https://doi.org/10.1007/s11464-022-1020-3

References

[1]
Arezzo C. Minimal surfaces and deformations of holomorphic curves in Kähler-Einstein manifolds. Ann Scuola Norm Sup Pisa Cl Sci 2000; 29(2): 473–481
[2]
Chern S S, Wolfson J. Minimal surfaces by moving frames. Amer J Math 1983; 105(1): 59–83
[3]
Han X L, Li J Y. Symplectic critical surfaces in Kähler surfaces. J Eur Math Soc 2010; 12(2): 505–527
[4]
Han X L, Li J Y. The second variation of the functional L of symplectic criticalsurfaces in Kähler surfaces. Commun Math Stat 2014; 2(3−4): 311–330
[5]
Han X L, Li J Y, Sun J. The deformation of symplectic critical surfaces in a Kählersurface-Ⅰ. Int Math Res Not IMRN 2018; 20: 6290–6328
[6]
Han X L, Li J Y, Sun J. The deformation of symplectic critical surfaces in a Kählersurface-Ⅱ– compactness. Calc Var Partial Differential Equations 2017; 56(3): 1–22
[7]
Michael J H, Simon L M. Sobolev and mean-value inequalities on generalized submanifolds of Rn. Comm Pure Appl Math 1973; 26: 361–379
[8]
Micallef M, Wolfson J. The second variation of area of minimal surfaces in fourmanifolds. Math Ann 1993; 295(2): 245–267
[9]
Webster S M. Minimal surfaces in a Kähler surface. J Differential Geom 1984; 20(2): 463–470
[10]
Wolfson J. Minimal surfaces in Kähler surfaces and Ricci curvature. J Differential Geom 1989; 29(2): 281–294
[11]
Wolfson J. On minimal surfaces in a Kähler manifold of constant holomorphic sectional curvature. Trans Amer Math Soc 1985; 290(2): 627–646

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11871436).

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(447 KB)

Accesses

Citations

Detail

Sections
Recommended

/