Frontiers of Mathematics in China >
Composition operators on the normal weight Dirichlet type space in the unit disc
Copyright
Let and be a normal function on . In this paper, several equivalent characterizations are given for which composition operators are bounded or compact on the normal weight Dirichlet type space in the unit disc.
Xuejun ZHANG , Min ZHOU , Hongxin CHEN . Composition operators on the normal weight Dirichlet type space in the unit disc[J]. Frontiers of Mathematics in China, 2022 , 17(4) : 545 -552 . DOI: 10.1007/s11464-022-1022-1
1 |
Abdollahi A. Self-commutators of automorphic composition operators on the Dirichlet space. Proc Amer Math Soc 2008; 136(9): 3185–3193
|
2 |
Cao Y X, Kumar S, Zhou Z H. Order bounded weighted composition operators mapping into the Dirichlet type space. Chin Ann Math Ser B 2016; 37(4): 585–594
|
3 |
Cheng Y, Kumar S, Zhou Z H. Composition operators on Dirichlet spaces and Bloch space. Acta Math Sin (Engl Ser) 2014; 30(10): 1775–1784
|
4 |
CowenCMacCluer B. Composition operators on spaces of analytic functions. Boca Raton: CRC Press, 1995
|
5 |
Hammond C. The norm of a composition operator with linear symbol acting on the Dirichlet space. J Math Anal Appl 2005; 303(2): 499–508
|
6 |
Kumar R, Singh K. Essential normal of weighted composition operators on the Dirichlet space. Extracta Math 2006; 21: 249–259
|
7 |
Kumar S. Weighted composition operators between spaces of Dirichlet type. Rev Mat Complut 2009; 22: 469–488
|
8 |
Lefèvre P, Li D, Queffélec H, Rodríguez-Piazza L. Compact composition operators on the Dirichlet space and capacity of sets of contact points. J Funct Anal 2013; 264(4): 895–919
|
9 |
Li D, Queffélec H, Rodríguez-Piazza L. Two results on composition operators on the Dirichlet space. J Math Anal Appl 2015; 426(2): 734–746
|
10 |
Liu X S, Lou Z J. Weighted composition operators on weighted Dirichlet spaces. Acta Math Sci Ser B 2013; 33(4): 1119–1126
|
11 |
Luecking D. Bounded composition operators with closed range on the Dirichlet space. Proc Amer Math Soc 2000; 128(4): 1109–1116
|
12 |
Martin M, Vukotić D. Norms and spectral radii of composition operators acting on the Dirichlet space. J Math Anal Appl 2005; 304: 22–32
|
13 |
Mirzakarimi G, Seddighi K. Weighted composition operators on Bergman and Dirichlet spaces. Georgian Math J 1997; 4: 373–383
|
14 |
Patton L, Robbins M. Approximating composition operator norms on the Dirichlet space. J Math Anal Appl 2008; 339(2): 1374–1385
|
15 |
RudinW. Function theory in the unit ball of Cn. New York: Springer-Verlag, 1980
|
16 |
ShapiroJ. Composition operators and classical function theory. New York: Springer-verlag, 1993
|
17 |
Wang M F. Weighted composition operators between Dirichlet spaces. Acta Math Sci Ser B 2011; 31(2): 641–651
|
18 |
Zhang L, Zhou Z H. Hypercyclicity of weighted composition operators on a weighted Dirichlet space. Complex Var Elliptic Equ 2014; 59(7): 1043–1051
|
19 |
Zhang X J, Xi L H, Fan H X, Li J F. Atomic decomposition of μ-Bergman space in Cn. Acta Math Sci Ser B 2014; 34(3): 779–789
|
20 |
Zorboska N. Composition operators on weighted Dirichlet spaces. Proc Amer Math Soc 1998; 126: 2013–2023
|
21 |
ZhuK. Spaces of holomorphic functions in the unit ball. New York: Springer-Verlag, 2005
|
22 |
ZhuK. Operator theory in function spaces. 2nd ed. Math Surveys Monogr, Vol 138. Providence, RI: AMS, 2007
|
/
〈 | 〉 |