RESEARCH ARTICLE

Boundary behavior of harmonic functions on metric measure spaces with non-negative Ricci curvature

  • Wanwan YANG ,
  • Bo LI
Expand
  • Center for Applied Mathematics, Tianjin University, Tianjin 300072, China

Published date: 15 Jun 2022

Copyright

2022 Higher Education Press

Abstract

Let (X, d, μ) be a metric measure space with non-negative Ricci curvature. This paper is concerned with the boundary behavior of harmonic function on the (open) upper half-space X×+. We derive that a function f of bounded mean oscillation (BMO) is the trace of harmonic function u(x,t ) on X×+,u(x,0 )=f( x), whenever u satisfies the following Carleson measure condition

supxB,rB 0rBfB(x B, rB)|t u(x ,t)|2d μ (x)dttC<

where =( x ,t) denotes the total gradient and B(xB,r B) denotes the (open) ball centered at xB with radius rB. Conversely, the above condition characterizes all the harmonic functions whose traces are in BMO space.

Cite this article

Wanwan YANG , Bo LI . Boundary behavior of harmonic functions on metric measure spaces with non-negative Ricci curvature[J]. Frontiers of Mathematics in China, 2022 , 17(3) : 455 -471 . DOI: 10.1007/s11464-022-1017-y

1
AmbrosioL, GigliN, SavaréG. Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces. Rev. Mat. Iberoam., 2013, 29(3): 969–996

DOI

2
AmbrosioL, GigliN, SavaréG. Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds. Ann. Probab., 2015, 43(1): 339–404

DOI

3
BjörnA, Björn J. Nonlinear Potential Theory on Metric Spaces. EMS Tracts in Mathematics, Vol. 17. Zürich: European Mathematical Society, 2011

4
ChenJ C. A representation theorem of harmonic functions and its application to BMO on manifolds. Appl Math. J. Chinese Univ. Ser. B, 2001, 16(3): 279–284

DOI

5
DuongX, YanL X, ZhangC. On characterization of Poisson integrals of Schrödinger operators with BMO traces. J. Funct. Anal., 2014, 266(4): 2053–2085

DOI

6
ErbarM, KuwadaK, SturmK T. On the equivalence of the entropic curvaturedimension condition and Bochner’s inequality on metric measure spaces. Invent. Math., 2015, 201(3): 993–1071

DOI

7
FabesE, Johnson R, NeriU. Spaces of harmonic functions representable by Poisson integrals of functions in BMO and Lp,λ. Indiana Univ. Math. J., 1976, 25(2): 159–170

DOI

8
FeffermanC, SteinE. Hp spaces of several variables. Acta Math., 1972, 129: 137–193

DOI

9
GigliN. On the differential structure of metric measure spaces and applications. Mem. Amer. Math. Soc., 2015, 236(1113): vi+91

DOI

10
HeinonenJ, Koskela P, ShanmugalingamN, TysonJ. Sobolev Spaces on Metric Measure Spaces, An Approach Based on Upper Gradients, New Mathematical Monographs, Vol. 27. Cambridge: Cambridge University Press, 2015

DOI

11
HofmannS, LuG Z, MitreaD, Mitrea M, YanL X. Hardy spaces associated to nonnegative self-adjoint operators satisfying Davies-Gaffney estimates. Mem. Amer. Math. Soc., 2011, 214(1007): 78

DOI

12
JiangR J. Cheeger-harmonic functions in metric measure spaces revisited. J. Funct. Anal., 2014, 266(3): 1373–1394

DOI

13
JiangR J. The Li-Yau inequality and heat kernels on metric measure spaces. J. Math. Pures Appl. (9), 2015, 104(1): 29–57

DOI

14
JiangR J, LiH Q, ZhangH C. Heat kernel bounds on metric measure spaces and some applications. Potential Anal., 2016, 44(3): 601–627

DOI

15
LottJ, Villani C. Ricci curvature for metric-measure spaces via optimal transport. Ann. of Math. (2), 2009, 169(3): 903–991

DOI

16
SturmK. On the geometry of metric measure spaces I. Acta Math., 2006, 196(1): 65–131

DOI

17
SturmK. On the geometry of metric measure spaces II. Acta Math., 2006, 196(1): 133–177

DOI

18
ZhangH C, ZhuX P. On a new definition of Ricci curvature on Alexandrov spaces. Acta Math. Sci. Ser. B (Engl. Ed.), 2010, 30(6): 1949–1974

DOI

19
ZhangH C, ZhuX P. Yau’s gradient estimates on Alexandrov spaces. J. Differential Geom., 2012, 91(3): 445–522

DOI

Outlines

/