Boundary behavior of harmonic functions on metric measure spaces with non-negative Ricci curvature

Wanwan YANG, Bo LI

PDF(922 KB)
PDF(922 KB)
Front. Math. China ›› 2022, Vol. 17 ›› Issue (3) : 455-471. DOI: 10.1007/s11464-022-1017-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Boundary behavior of harmonic functions on metric measure spaces with non-negative Ricci curvature

Author information +
History +

Abstract

Let (X, d, μ) be a metric measure space with non-negative Ricci curvature. This paper is concerned with the boundary behavior of harmonic function on the (open) upper half-space X×+. We derive that a function f of bounded mean oscillation (BMO) is the trace of harmonic function u(x,t ) on X×+,u(x,0 )=f( x), whenever u satisfies the following Carleson measure condition

supxB,rB 0rBfB(x B, rB)|t u(x ,t)|2d μ (x)dttC<

where =( x ,t) denotes the total gradient and B(xB,r B) denotes the (open) ball centered at xB with radius rB. Conversely, the above condition characterizes all the harmonic functions whose traces are in BMO space.

Keywords

Harmonic function / metric measure space / BMO / Carleson measure

Cite this article

Download citation ▾
Wanwan YANG, Bo LI. Boundary behavior of harmonic functions on metric measure spaces with non-negative Ricci curvature. Front. Math. China, 2022, 17(3): 455‒471 https://doi.org/10.1007/s11464-022-1017-y

References

[1]
AmbrosioL, GigliN, SavaréG. Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces. Rev. Mat. Iberoam., 2013, 29(3): 969–996
CrossRef Google scholar
[2]
AmbrosioL, GigliN, SavaréG. Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds. Ann. Probab., 2015, 43(1): 339–404
CrossRef Google scholar
[3]
BjörnA, Björn J. Nonlinear Potential Theory on Metric Spaces. EMS Tracts in Mathematics, Vol. 17. Zürich: European Mathematical Society, 2011
[4]
ChenJ C. A representation theorem of harmonic functions and its application to BMO on manifolds. Appl Math. J. Chinese Univ. Ser. B, 2001, 16(3): 279–284
CrossRef Google scholar
[5]
DuongX, YanL X, ZhangC. On characterization of Poisson integrals of Schrödinger operators with BMO traces. J. Funct. Anal., 2014, 266(4): 2053–2085
CrossRef Google scholar
[6]
ErbarM, KuwadaK, SturmK T. On the equivalence of the entropic curvaturedimension condition and Bochner’s inequality on metric measure spaces. Invent. Math., 2015, 201(3): 993–1071
CrossRef Google scholar
[7]
FabesE, Johnson R, NeriU. Spaces of harmonic functions representable by Poisson integrals of functions in BMO and Lp,λ. Indiana Univ. Math. J., 1976, 25(2): 159–170
CrossRef Google scholar
[8]
FeffermanC, SteinE. Hp spaces of several variables. Acta Math., 1972, 129: 137–193
CrossRef Google scholar
[9]
GigliN. On the differential structure of metric measure spaces and applications. Mem. Amer. Math. Soc., 2015, 236(1113): vi+91
CrossRef Google scholar
[10]
HeinonenJ, Koskela P, ShanmugalingamN, TysonJ. Sobolev Spaces on Metric Measure Spaces, An Approach Based on Upper Gradients, New Mathematical Monographs, Vol. 27. Cambridge: Cambridge University Press, 2015
CrossRef Google scholar
[11]
HofmannS, LuG Z, MitreaD, Mitrea M, YanL X. Hardy spaces associated to nonnegative self-adjoint operators satisfying Davies-Gaffney estimates. Mem. Amer. Math. Soc., 2011, 214(1007): 78
CrossRef Google scholar
[12]
JiangR J. Cheeger-harmonic functions in metric measure spaces revisited. J. Funct. Anal., 2014, 266(3): 1373–1394
CrossRef Google scholar
[13]
JiangR J. The Li-Yau inequality and heat kernels on metric measure spaces. J. Math. Pures Appl. (9), 2015, 104(1): 29–57
CrossRef Google scholar
[14]
JiangR J, LiH Q, ZhangH C. Heat kernel bounds on metric measure spaces and some applications. Potential Anal., 2016, 44(3): 601–627
CrossRef Google scholar
[15]
LottJ, Villani C. Ricci curvature for metric-measure spaces via optimal transport. Ann. of Math. (2), 2009, 169(3): 903–991
CrossRef Google scholar
[16]
SturmK. On the geometry of metric measure spaces I. Acta Math., 2006, 196(1): 65–131
CrossRef Google scholar
[17]
SturmK. On the geometry of metric measure spaces II. Acta Math., 2006, 196(1): 133–177
CrossRef Google scholar
[18]
ZhangH C, ZhuX P. On a new definition of Ricci curvature on Alexandrov spaces. Acta Math. Sci. Ser. B (Engl. Ed.), 2010, 30(6): 1949–1974
CrossRef Google scholar
[19]
ZhangH C, ZhuX P. Yau’s gradient estimates on Alexandrov spaces. J. Differential Geom., 2012, 91(3): 445–522
CrossRef Google scholar

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(922 KB)

Accesses

Citations

Detail

Sections
Recommended

/