Boundary behavior of harmonic functions on metric measure spaces with non-negative Ricci curvature

Wanwan YANG , Bo LI

Front. Math. China ›› 2022, Vol. 17 ›› Issue (3) : 455 -471.

PDF (922KB)
Front. Math. China ›› 2022, Vol. 17 ›› Issue (3) : 455 -471. DOI: 10.1007/s11464-022-1017-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Boundary behavior of harmonic functions on metric measure spaces with non-negative Ricci curvature

Author information +
History +
PDF (922KB)

Abstract

Let (X, d, μ) be a metric measure space with non-negative Ricci curvature. This paper is concerned with the boundary behavior of harmonic function on the (open) upper half-space X×+. We derive that a function f of bounded mean oscillation (BMO) is the trace of harmonic function u(x,t ) on X×+,u(x,0 )=f( x), whenever u satisfies the following Carleson measure condition

supxB,rB 0rBfB(x B, rB)|t u(x ,t)|2d μ (x)dttC<

where =( x ,t) denotes the total gradient and B(xB,r B) denotes the (open) ball centered at xB with radius rB. Conversely, the above condition characterizes all the harmonic functions whose traces are in BMO space.

Keywords

Harmonic function / metric measure space / BMO / Carleson measure

Cite this article

Download citation ▾
Wanwan YANG, Bo LI. Boundary behavior of harmonic functions on metric measure spaces with non-negative Ricci curvature. Front. Math. China, 2022, 17(3): 455-471 DOI:10.1007/s11464-022-1017-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AmbrosioL, GigliN, SavaréG. Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces. Rev. Mat. Iberoam., 2013, 29(3): 969–996

[2]

AmbrosioL, GigliN, SavaréG. Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds. Ann. Probab., 2015, 43(1): 339–404

[3]

BjörnA, Björn J. Nonlinear Potential Theory on Metric Spaces. EMS Tracts in Mathematics, Vol. 17. Zürich: European Mathematical Society, 2011

[4]

ChenJ C. A representation theorem of harmonic functions and its application to BMO on manifolds. Appl Math. J. Chinese Univ. Ser. B, 2001, 16(3): 279–284

[5]

DuongX, YanL X, ZhangC. On characterization of Poisson integrals of Schrödinger operators with BMO traces. J. Funct. Anal., 2014, 266(4): 2053–2085

[6]

ErbarM, KuwadaK, SturmK T. On the equivalence of the entropic curvaturedimension condition and Bochner’s inequality on metric measure spaces. Invent. Math., 2015, 201(3): 993–1071

[7]

FabesE, Johnson R, NeriU. Spaces of harmonic functions representable by Poisson integrals of functions in BMO and Lp,λ. Indiana Univ. Math. J., 1976, 25(2): 159–170

[8]

FeffermanC, SteinE. Hp spaces of several variables. Acta Math., 1972, 129: 137–193

[9]

GigliN. On the differential structure of metric measure spaces and applications. Mem. Amer. Math. Soc., 2015, 236(1113): vi+91

[10]

HeinonenJ, Koskela P, ShanmugalingamN, TysonJ. Sobolev Spaces on Metric Measure Spaces, An Approach Based on Upper Gradients, New Mathematical Monographs, Vol. 27. Cambridge: Cambridge University Press, 2015

[11]

HofmannS, LuG Z, MitreaD, Mitrea M, YanL X. Hardy spaces associated to nonnegative self-adjoint operators satisfying Davies-Gaffney estimates. Mem. Amer. Math. Soc., 2011, 214(1007): 78

[12]

JiangR J. Cheeger-harmonic functions in metric measure spaces revisited. J. Funct. Anal., 2014, 266(3): 1373–1394

[13]

JiangR J. The Li-Yau inequality and heat kernels on metric measure spaces. J. Math. Pures Appl. (9), 2015, 104(1): 29–57

[14]

JiangR J, LiH Q, ZhangH C. Heat kernel bounds on metric measure spaces and some applications. Potential Anal., 2016, 44(3): 601–627

[15]

LottJ, Villani C. Ricci curvature for metric-measure spaces via optimal transport. Ann. of Math. (2), 2009, 169(3): 903–991

[16]

SturmK. On the geometry of metric measure spaces I. Acta Math., 2006, 196(1): 65–131

[17]

SturmK. On the geometry of metric measure spaces II. Acta Math., 2006, 196(1): 133–177

[18]

ZhangH C, ZhuX P. On a new definition of Ricci curvature on Alexandrov spaces. Acta Math. Sci. Ser. B (Engl. Ed.), 2010, 30(6): 1949–1974

[19]

ZhangH C, ZhuX P. Yau’s gradient estimates on Alexandrov spaces. J. Differential Geom., 2012, 91(3): 445–522

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (922KB)

830

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/