RESEARCH ARTICLE

Constructions of Sidon spaces and cyclic subspace codes

  • He ZHANG 1,2 ,
  • Xiwang CAO , 1,3
Expand
  • 1. Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China
  • 2. School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006, China
  • 3. Key Laboratory of Mathematical Modelling and High Performance Computing of Air Vehicles (NUAA), MIIT, Nanjing 211106, China

Published date: 15 Apr 2022

Copyright

2022 Higher Education Press

Abstract

In this paper, we firstly construct several new kinds of Sidon spaces and Sidon sets by investigating some known results. Secondly, using these Sidon spaces, we will present a construction of cyclic subspace codes with cardinality τ · $\frac{{{q^n} - 1}}{{q - 1}}$ and minimum distance 2k−2, where τ is a positive integer. We furthermore give some cyclic subspace codes with size 2τ · $\frac{{{q^n} - 1}}{{q - 1}}$ and without changing the minimum distance 2k−2.

Cite this article

He ZHANG , Xiwang CAO . Constructions of Sidon spaces and cyclic subspace codes[J]. Frontiers of Mathematics in China, 2022 , 17(2) : 275 -288 . DOI: 10.1007/s11464-022-1011-4

1
Ahlswede R , Aydinian H K , Khachatrian L H . On perfect codes and related concepts. Des Codes Cryptogr, 2001, 22 (3): 221- 237

DOI

2
Bachoc C , Serra O , Zémor . An analogue of Vosper’s theorem for extension fields. Math. Proc. Cambridge Philos. Soc., 2017, 163 (3): 423- 452

DOI

3
Ben-Sasson E , Etzion T , Gabizon A , Raviv N . Subspace polynomial and cyclic subspace codes. IEEE Trans. Inf. Theory, 2016, 62 (3): 1157- 1165

DOI

4
Braun M , Etzion T , Ostergard P , Vardy A , Wasserman A . Existence of q-analogs of Steiner systems. Forum Math. Pi., 2016, 4 (e7): 1- 14

5
Chen B , Liu H . Constructions of cyclic constant dimension codes. Des. Codes Cryptogr., 2017, 1- 13

DOI

6
Cheng Q , Gao S , Wan D . Constructing high order elements through subspace polynomials. In: Proceedings of 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2012, 1463- 1547

7
Chihara L . On the zeros of the Askey-Wilson polynomials, with applications to coding theory. SIAM J. Math. Anal., 1987, 18 (1): 191- 207

DOI

8
Etzion T , Vardy A . Error-correcting codes in projective space. IEEE Trans. Inf. Theory, 2011, 57 (2): 1165- 1173

DOI

9
Feng T , Wang Y . New constructions of large cyclic subspace codes and Sidon spaces. Discrete Math., 2021, 344 (4): 112273

DOI

10
Gluesing-Luerssen H , Lehmann H . Distance Distributions of Cyclic Orbit Codes. Des. Codes Cryptogr., 2021, 89: 447- 470

DOI

11
Gluesing-Luerssen H , Morrison K , Troha C . Cyclic orbit codes and stabilizer subfields. Adv. Math. Commun., 2015, 9 (2): 177- 197

DOI

12
Kohnert A , Kurz S . Construction of large constant dimension codes with a prescribed minimum distance. In: Mathematical Methods in Computer Science, vol. 5393. Lecture Notes in Computer Science, 31–42 Springer, Berlin, 2008

13
Kötter R , Kschischang F R . Coding for errors and erasures in random network coding. IEEE Trans. Inf. Theory, 2008, 54 (8): 3579- 3591

DOI

14
Martin W J , Zhu X J . Anticodes for the Grassman and bilinear forms graphs. Des. Codes Cryptogr., 1995, 6 (1): 73- 79

DOI

15
Ötal K , Ozbudak F . Cyclic subspace codes via subspace polynomials. Des. Codes Cryptogr., 2017, 85 (2): 191- 204

DOI

16
Raviv N , Tamo I . Cyclic subspace codes and Sidon spaces. IEEE International Symposium on Information Theory, 2017, 784- 788

17
Roth R M , Raviv N , Tamo I . Construction of Sidon spaces with Applications to Coding. IEEE Trans. Inf. Theory, 2018, 64 (6): 4412- 4422

DOI

18
Schwartz M , Etzion T . Codes and anticodes in the Grassman graph. J. Combin. Theory A, 2002, 97 (1): 27- 42

DOI

19
Trautmann A L , Manganiello F , Braun M , Rosenthal J . Cyclic orbit codes. IEEE Trans. Inf. Theory, 2013, 59 (11): 7386- 7404

DOI

20
Niu Y , Yue Y . Several kinds of large cyclic subspace codes via Sidon spaces. Discrete Math, 2020, 343 (5): 111788

DOI

21
Li Y , Liu H . Cyclic subspace codes via the sum of Sidon spaces. arXiv: 2105.12520 [cs.IT].

22
Zhang H , Cao X . Further constructions of cyclic subspace codes. Cryptogr Commun, 2021, 13: 245- 262

DOI

23
Zhao W , Tang X . A characterization of cyclic subspace codes via subspace polynomials. Finite Fields Appl, 2019, 57: 1- 12 (in Chinese)

Outlines

/