Constructions of Sidon spaces and cyclic subspace codes

He ZHANG , Xiwang CAO

Front. Math. China ›› 2022, Vol. 17 ›› Issue (2) : 275 -288.

PDF (238KB)
Front. Math. China ›› 2022, Vol. 17 ›› Issue (2) : 275 -288. DOI: 10.1007/s11464-022-1011-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Constructions of Sidon spaces and cyclic subspace codes

Author information +
History +
PDF (238KB)

Abstract

In this paper, we firstly construct several new kinds of Sidon spaces and Sidon sets by investigating some known results. Secondly, using these Sidon spaces, we will present a construction of cyclic subspace codes with cardinality τ · $\frac{{{q^n} - 1}}{{q - 1}}$ and minimum distance 2k−2, where τ is a positive integer. We furthermore give some cyclic subspace codes with size 2τ · $\frac{{{q^n} - 1}}{{q - 1}}$ and without changing the minimum distance 2k−2.

Keywords

Sidon spaces / Sidon sets / cyclic subspace codes / minimum distance

Cite this article

Download citation ▾
He ZHANG, Xiwang CAO. Constructions of Sidon spaces and cyclic subspace codes. Front. Math. China, 2022, 17(2): 275-288 DOI:10.1007/s11464-022-1011-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahlswede R , Aydinian H K , Khachatrian L H . On perfect codes and related concepts. Des Codes Cryptogr, 2001, 22 (3): 221- 237

[2]

Bachoc C , Serra O , Zémor . An analogue of Vosper’s theorem for extension fields. Math. Proc. Cambridge Philos. Soc., 2017, 163 (3): 423- 452

[3]

Ben-Sasson E , Etzion T , Gabizon A , Raviv N . Subspace polynomial and cyclic subspace codes. IEEE Trans. Inf. Theory, 2016, 62 (3): 1157- 1165

[4]

Braun M , Etzion T , Ostergard P , Vardy A , Wasserman A . Existence of q-analogs of Steiner systems. Forum Math. Pi., 2016, 4 (e7): 1- 14

[5]

Chen B , Liu H . Constructions of cyclic constant dimension codes. Des. Codes Cryptogr., 2017, 1- 13

[6]

Cheng Q , Gao S , Wan D . Constructing high order elements through subspace polynomials. In: Proceedings of 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2012, 1463- 1547

[7]

Chihara L . On the zeros of the Askey-Wilson polynomials, with applications to coding theory. SIAM J. Math. Anal., 1987, 18 (1): 191- 207

[8]

Etzion T , Vardy A . Error-correcting codes in projective space. IEEE Trans. Inf. Theory, 2011, 57 (2): 1165- 1173

[9]

Feng T , Wang Y . New constructions of large cyclic subspace codes and Sidon spaces. Discrete Math., 2021, 344 (4): 112273

[10]

Gluesing-Luerssen H , Lehmann H . Distance Distributions of Cyclic Orbit Codes. Des. Codes Cryptogr., 2021, 89: 447- 470

[11]

Gluesing-Luerssen H , Morrison K , Troha C . Cyclic orbit codes and stabilizer subfields. Adv. Math. Commun., 2015, 9 (2): 177- 197

[12]

Kohnert A , Kurz S . Construction of large constant dimension codes with a prescribed minimum distance. In: Mathematical Methods in Computer Science, vol. 5393. Lecture Notes in Computer Science, 31–42 Springer, Berlin, 2008

[13]

Kötter R , Kschischang F R . Coding for errors and erasures in random network coding. IEEE Trans. Inf. Theory, 2008, 54 (8): 3579- 3591

[14]

Martin W J , Zhu X J . Anticodes for the Grassman and bilinear forms graphs. Des. Codes Cryptogr., 1995, 6 (1): 73- 79

[15]

Ötal K , Ozbudak F . Cyclic subspace codes via subspace polynomials. Des. Codes Cryptogr., 2017, 85 (2): 191- 204

[16]

Raviv N , Tamo I . Cyclic subspace codes and Sidon spaces. IEEE International Symposium on Information Theory, 2017, 784- 788

[17]

Roth R M , Raviv N , Tamo I . Construction of Sidon spaces with Applications to Coding. IEEE Trans. Inf. Theory, 2018, 64 (6): 4412- 4422

[18]

Schwartz M , Etzion T . Codes and anticodes in the Grassman graph. J. Combin. Theory A, 2002, 97 (1): 27- 42

[19]

Trautmann A L , Manganiello F , Braun M , Rosenthal J . Cyclic orbit codes. IEEE Trans. Inf. Theory, 2013, 59 (11): 7386- 7404

[20]

Niu Y , Yue Y . Several kinds of large cyclic subspace codes via Sidon spaces. Discrete Math, 2020, 343 (5): 111788

[21]

Li Y , Liu H . Cyclic subspace codes via the sum of Sidon spaces. arXiv: 2105.12520 [cs.IT].

[22]

Zhang H , Cao X . Further constructions of cyclic subspace codes. Cryptogr Commun, 2021, 13: 245- 262

[23]

Zhao W , Tang X . A characterization of cyclic subspace codes via subspace polynomials. Finite Fields Appl, 2019, 57: 1- 12 (in Chinese)

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (238KB)

564

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/