RESEARCH ARTICLE

Random weighting estimation for survival function under right censorship

  • Wei LIANG
Expand
  • School of Mathematical Sciences, Xiamen University, Xiamen 361005, China

Published date: 15 Feb 2022

Copyright

2022 Higher Education Press

Abstract

The random weighting method is an emerging computing method in statistics. In this paper, we propose a novel estimation of the survival function for right censored data based on the random weighting method. Under some regularity conditions, we prove the strong consistency of this estimation.

Cite this article

Wei LIANG . Random weighting estimation for survival function under right censorship[J]. Frontiers of Mathematics in China, 2022 , 17(1) : 141 -148 . DOI: 10.1007/s11464-022-1006-1

1
Efron B. Bootstrap Methods: another look at the Jackknife. Ann Statist, 1979, 7 (1): 1- 26

2
Wilks S S. Mathematical Statistics. New York: John Wiley & Sons, 1962

3
Peterson A V Jr. Expressing the Kaplan-Meier estimator as a function of empirical subsurvival functions. J. Amer Statist Assoc, 1977, 72: 854- 858

4
Zheng Z G. Random weighting method. Acta Mathematicae Applicatae Sinica, 1987, 10 (2): 247- 253 (in Chinese)

5
Zheng Z G, Tu D S. Random weighted approximation in linear model. SCI CHINA SER A, 1988, 31 (6): 561- 575 (in Chinese)

6
Wu Y H, Zhao L C. A large sample study of random weighted bootstrap in linear models. Science in China Series A: Mathematics, 1999, 42 (10): 1066- 1074

DOI

7
Fang Y X, Zhao L C. Approximation to the distribution of LAD estimators for censored regression by random weighting method. J. Statist Plan Infer, 2006, 136 (4): 1302- 1316

DOI

8
Wu X Y, Yang Y N, Zhao L C. Approximation by random weighting method for M-test in linear models. Science in China: Series A, Mathematics, 2007, 50 (1): 87- 99

DOI

9
Rubin D B. The Bayesian bootstrap. The annals of statistics, 1981: 130- 134

10
Lo A Y. A large sample study of the Bayesian bootstrap. The annals of statistics, 1987: 360- 375

11
Ng T L, Newton M A. Newton M A. Random weighting in LASSO regression. arXiv preprint arXiv:2002.02629, 2020

12
Gao Z, Gu C, Yang J, Gao S, Zhong Y. Random Weighting-Based Nonlinear Gaussian Filtering. IEEE Access, 2020, 8: 19590- 19605

DOI

13
Tu D S, Zheng Z G. Asymptotic Expansion of Random Weighting Method. Applied Probability and Statistics, 1987, 3 (4): 340- 347 (in Chinese)

Outlines

/