Random weighting estimation for survival function under right censorship

Wei LIANG

PDF(253 KB)
PDF(253 KB)
Front. Math. China ›› 2022, Vol. 17 ›› Issue (1) : 141-148. DOI: 10.1007/s11464-022-1006-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Random weighting estimation for survival function under right censorship

Author information +
History +

Abstract

The random weighting method is an emerging computing method in statistics. In this paper, we propose a novel estimation of the survival function for right censored data based on the random weighting method. Under some regularity conditions, we prove the strong consistency of this estimation.

Keywords

Right censored data / survival function / random weighting method

Cite this article

Download citation ▾
Wei LIANG. Random weighting estimation for survival function under right censorship. Front. Math. China, 2022, 17(1): 141‒148 https://doi.org/10.1007/s11464-022-1006-1

References

[1]
Efron B. Bootstrap Methods: another look at the Jackknife. Ann Statist, 1979, 7 (1): 1- 26
[2]
Wilks S S. Mathematical Statistics. New York: John Wiley & Sons, 1962
[3]
Peterson A V Jr. Expressing the Kaplan-Meier estimator as a function of empirical subsurvival functions. J. Amer Statist Assoc, 1977, 72: 854- 858
[4]
Zheng Z G. Random weighting method. Acta Mathematicae Applicatae Sinica, 1987, 10 (2): 247- 253 (in Chinese)
[5]
Zheng Z G, Tu D S. Random weighted approximation in linear model. SCI CHINA SER A, 1988, 31 (6): 561- 575 (in Chinese)
[6]
Wu Y H, Zhao L C. A large sample study of random weighted bootstrap in linear models. Science in China Series A: Mathematics, 1999, 42 (10): 1066- 1074
CrossRef Google scholar
[7]
Fang Y X, Zhao L C. Approximation to the distribution of LAD estimators for censored regression by random weighting method. J. Statist Plan Infer, 2006, 136 (4): 1302- 1316
CrossRef Google scholar
[8]
Wu X Y, Yang Y N, Zhao L C. Approximation by random weighting method for M-test in linear models. Science in China: Series A, Mathematics, 2007, 50 (1): 87- 99
CrossRef Google scholar
[9]
Rubin D B. The Bayesian bootstrap. The annals of statistics, 1981: 130- 134
[10]
Lo A Y. A large sample study of the Bayesian bootstrap. The annals of statistics, 1987: 360- 375
[11]
Ng T L, Newton M A. Newton M A. Random weighting in LASSO regression. arXiv preprint arXiv:2002.02629, 2020
[12]
Gao Z, Gu C, Yang J, Gao S, Zhong Y. Random Weighting-Based Nonlinear Gaussian Filtering. IEEE Access, 2020, 8: 19590- 19605
CrossRef Google scholar
[13]
Tu D S, Zheng Z G. Asymptotic Expansion of Random Weighting Method. Applied Probability and Statistics, 1987, 3 (4): 340- 347 (in Chinese)

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(253 KB)

Accesses

Citations

Detail

Sections
Recommended

/