Random weighting estimation for survival function under right censorship

Wei LIANG

Front. Math. China ›› 2022, Vol. 17 ›› Issue (1) : 141 -148.

PDF (253KB)
Front. Math. China ›› 2022, Vol. 17 ›› Issue (1) : 141 -148. DOI: 10.1007/s11464-022-1006-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Random weighting estimation for survival function under right censorship

Author information +
History +
PDF (253KB)

Abstract

The random weighting method is an emerging computing method in statistics. In this paper, we propose a novel estimation of the survival function for right censored data based on the random weighting method. Under some regularity conditions, we prove the strong consistency of this estimation.

Keywords

Right censored data / survival function / random weighting method

Cite this article

Download citation ▾
Wei LIANG. Random weighting estimation for survival function under right censorship. Front. Math. China, 2022, 17(1): 141-148 DOI:10.1007/s11464-022-1006-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Efron B. Bootstrap Methods: another look at the Jackknife. Ann Statist, 1979, 7 (1): 1- 26

[2]

Wilks S S. Mathematical Statistics. New York: John Wiley & Sons, 1962

[3]

Peterson A V Jr. Expressing the Kaplan-Meier estimator as a function of empirical subsurvival functions. J. Amer Statist Assoc, 1977, 72: 854- 858

[4]

Zheng Z G. Random weighting method. Acta Mathematicae Applicatae Sinica, 1987, 10 (2): 247- 253 (in Chinese)

[5]

Zheng Z G, Tu D S. Random weighted approximation in linear model. SCI CHINA SER A, 1988, 31 (6): 561- 575 (in Chinese)

[6]

Wu Y H, Zhao L C. A large sample study of random weighted bootstrap in linear models. Science in China Series A: Mathematics, 1999, 42 (10): 1066- 1074

[7]

Fang Y X, Zhao L C. Approximation to the distribution of LAD estimators for censored regression by random weighting method. J. Statist Plan Infer, 2006, 136 (4): 1302- 1316

[8]

Wu X Y, Yang Y N, Zhao L C. Approximation by random weighting method for M-test in linear models. Science in China: Series A, Mathematics, 2007, 50 (1): 87- 99

[9]

Rubin D B. The Bayesian bootstrap. The annals of statistics, 1981: 130- 134

[10]

Lo A Y. A large sample study of the Bayesian bootstrap. The annals of statistics, 1987: 360- 375

[11]

Ng T L, Newton M A. Newton M A. Random weighting in LASSO regression. arXiv preprint arXiv:2002.02629, 2020

[12]

Gao Z, Gu C, Yang J, Gao S, Zhong Y. Random Weighting-Based Nonlinear Gaussian Filtering. IEEE Access, 2020, 8: 19590- 19605

[13]

Tu D S, Zheng Z G. Asymptotic Expansion of Random Weighting Method. Applied Probability and Statistics, 1987, 3 (4): 340- 347 (in Chinese)

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (253KB)

525

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/