RESEARCH ARTICLE

Fourier matrices and Fourier tensors

  • Changqing XU
Expand
  • School of Mathematical Sciences, Suzhou University of Science and Technology, Suzhou 215009, China

Received date: 01 Sep 2020

Accepted date: 29 Jan 2021

Copyright

2021 Higher Education Press

Abstract

The Fourier matrix is fundamental in discrete Fourier transforms and fast Fourier transforms. We generalize the Fourier matrix, extend the concept of Fourier matrix to higher order Fourier tensor, present the spectrum of the Fourier tensors, and use the Fourier tensor to simplify the high order Fourier analysis.

Cite this article

Changqing XU . Fourier matrices and Fourier tensors[J]. Frontiers of Mathematics in China, 2021 , 16(4) : 1099 -1115 . DOI: 10.1007/s11464-021-0904-y

1
Bracewell R N. The Fourier Transform and Its Applications. 3rd ed. Boston: McGraw-Hill, 2000

2
Comon P, Golub G H, Lim L H, Mourrain B. Symmetric Tensors and Symmetric Tensor Rank. SCCM Technical Report 06-02. Stanford Univ, 2006

3
Cooley J W, Lewis P A W, Welch P D. Historical notes on the fast Fourier transform. Proc IEEE, 1967, 55(10): 1675–1677

DOI

4
Cooley J W, Tukey J W. An algorithm for the machine calculation of complex Fourier series. Math Comp, 1965, 19: 297–301

DOI

5
Danielson G C, Lanczos C. Some improvements in practical Fourier analysis and their application to X-ray scattering from liquids. J Franklin Inst, 1942, 233: 365–380

DOI

6
Gentleman W M, Sande G. Fast Fourier transforms for fun and profit. In: Fall Joint Computer Conference, Vol 29 of AFIPS Conference Proceedings, Spartan Books, Washington D C. 1966, 563–578

7
Goertzel G. An algorithm for the evaluation of finite trigonometric series. Amer Math Monthly, 1958, 65(1): 34–35

DOI

8
Good I J. The interaction algorithm and practical Fourier analysis. J R Stat Soc Ser A, 1958, 20: 361–372

DOI

9
Gray R M, Goodman J W. Fourier Transforms: An Introduction for Engineers. Dordrecht: Kluwer, 1995

DOI

10
Harshman R A. Determination and proof of minimum uniqueness conditions for PARAFAC. UCLA Working Papers in Phonetics, 1972, 22: 111–117

11
Huang Z, Qi L Q. Positive definiteness of paired symmetric tensors and elasticity tensors. J Comput Appl Math, 2018, 338: 22–43

DOI

12
Kolda T. Numerical optimization for symmetric tensor decomposition. Math Program, Ser B, 2015, 151: 225–248

DOI

13
Kolda T, Bader B W. Tensor decompositions and applications. SIAM Review, 2009, 51: 455–500

DOI

14
Qi L Q. Eigenvalues and invariants of tensors. J Math Anal Appl, 2007, 325: 1363–1377

DOI

15
Qi L Q. Symmetric nonnegative tensors and copositive tensors. Linear Algebra Appl, 2013, 439: 228–238

DOI

16
Qi L Q, Luo Z Y. Tensor Analysis: Spectral Theory and Special Tensors. Philadelphia: SIAM, 2017

DOI

17
Serre J-P. A Course in Arithmetic. Grad Texts in Math, Vol 7. New York: Springer, 1973

DOI

18
Tao T. High Order Fourier Analysis. Grad Stud Math, Vol 142. Providence: Amer MathSoc, 2012

19
Terras A. Fourier Analysis on Finite Groups and Applications. Cambridge: Cambridge Univ Press, 1999

DOI

20
Xu C Q, Wang M Y, Li X. Generalized Vandermonde tensors. Front Math China, 2016, 11(3): 593–603

DOI

21
Xu C Q, Xu Y R. Tensor convolutions and Hankel tensors. Front Math China, 2017, 12(6): 1357–1373

DOI

Outlines

/