Fourier matrices and Fourier tensors

Changqing XU

Front. Math. China ›› 2021, Vol. 16 ›› Issue (4) : 1099 -1115.

PDF (329KB)
Front. Math. China ›› 2021, Vol. 16 ›› Issue (4) : 1099 -1115. DOI: 10.1007/s11464-021-0904-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Fourier matrices and Fourier tensors

Author information +
History +
PDF (329KB)

Abstract

The Fourier matrix is fundamental in discrete Fourier transforms and fast Fourier transforms. We generalize the Fourier matrix, extend the concept of Fourier matrix to higher order Fourier tensor, present the spectrum of the Fourier tensors, and use the Fourier tensor to simplify the high order Fourier analysis.

Keywords

Fourier matrix / tensor / CP decomposition / Fourier analysis

Cite this article

Download citation ▾
Changqing XU. Fourier matrices and Fourier tensors. Front. Math. China, 2021, 16(4): 1099-1115 DOI:10.1007/s11464-021-0904-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bracewell R N. The Fourier Transform and Its Applications. 3rd ed. Boston: McGraw-Hill, 2000

[2]

Comon P, Golub G H, Lim L H, Mourrain B. Symmetric Tensors and Symmetric Tensor Rank. SCCM Technical Report 06-02. Stanford Univ, 2006

[3]

Cooley J W, Lewis P A W, Welch P D. Historical notes on the fast Fourier transform. Proc IEEE, 1967, 55(10): 1675–1677

[4]

Cooley J W, Tukey J W. An algorithm for the machine calculation of complex Fourier series. Math Comp, 1965, 19: 297–301

[5]

Danielson G C, Lanczos C. Some improvements in practical Fourier analysis and their application to X-ray scattering from liquids. J Franklin Inst, 1942, 233: 365–380

[6]

Gentleman W M, Sande G. Fast Fourier transforms for fun and profit. In: Fall Joint Computer Conference, Vol 29 of AFIPS Conference Proceedings, Spartan Books, Washington D C. 1966, 563–578

[7]

Goertzel G. An algorithm for the evaluation of finite trigonometric series. Amer Math Monthly, 1958, 65(1): 34–35

[8]

Good I J. The interaction algorithm and practical Fourier analysis. J R Stat Soc Ser A, 1958, 20: 361–372

[9]

Gray R M, Goodman J W. Fourier Transforms: An Introduction for Engineers. Dordrecht: Kluwer, 1995

[10]

Harshman R A. Determination and proof of minimum uniqueness conditions for PARAFAC. UCLA Working Papers in Phonetics, 1972, 22: 111–117

[11]

Huang Z, Qi L Q. Positive definiteness of paired symmetric tensors and elasticity tensors. J Comput Appl Math, 2018, 338: 22–43

[12]

Kolda T. Numerical optimization for symmetric tensor decomposition. Math Program, Ser B, 2015, 151: 225–248

[13]

Kolda T, Bader B W. Tensor decompositions and applications. SIAM Review, 2009, 51: 455–500

[14]

Qi L Q. Eigenvalues and invariants of tensors. J Math Anal Appl, 2007, 325: 1363–1377

[15]

Qi L Q. Symmetric nonnegative tensors and copositive tensors. Linear Algebra Appl, 2013, 439: 228–238

[16]

Qi L Q, Luo Z Y. Tensor Analysis: Spectral Theory and Special Tensors. Philadelphia: SIAM, 2017

[17]

Serre J-P. A Course in Arithmetic. Grad Texts in Math, Vol 7. New York: Springer, 1973

[18]

Tao T. High Order Fourier Analysis. Grad Stud Math, Vol 142. Providence: Amer MathSoc, 2012

[19]

Terras A. Fourier Analysis on Finite Groups and Applications. Cambridge: Cambridge Univ Press, 1999

[20]

Xu C Q, Wang M Y, Li X. Generalized Vandermonde tensors. Front Math China, 2016, 11(3): 593–603

[21]

Xu C Q, Xu Y R. Tensor convolutions and Hankel tensors. Front Math China, 2017, 12(6): 1357–1373

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (329KB)

807

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/