Fourier matrices and Fourier tensors

Changqing XU

PDF(329 KB)
PDF(329 KB)
Front. Math. China ›› 2021, Vol. 16 ›› Issue (4) : 1099-1115. DOI: 10.1007/s11464-021-0904-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Fourier matrices and Fourier tensors

Author information +
History +

Abstract

The Fourier matrix is fundamental in discrete Fourier transforms and fast Fourier transforms. We generalize the Fourier matrix, extend the concept of Fourier matrix to higher order Fourier tensor, present the spectrum of the Fourier tensors, and use the Fourier tensor to simplify the high order Fourier analysis.

Keywords

Fourier matrix / tensor / CP decomposition / Fourier analysis

Cite this article

Download citation ▾
Changqing XU. Fourier matrices and Fourier tensors. Front. Math. China, 2021, 16(4): 1099‒1115 https://doi.org/10.1007/s11464-021-0904-y

References

[1]
Bracewell R N. The Fourier Transform and Its Applications. 3rd ed. Boston: McGraw-Hill, 2000
[2]
Comon P, Golub G H, Lim L H, Mourrain B. Symmetric Tensors and Symmetric Tensor Rank. SCCM Technical Report 06-02. Stanford Univ, 2006
[3]
Cooley J W, Lewis P A W, Welch P D. Historical notes on the fast Fourier transform. Proc IEEE, 1967, 55(10): 1675–1677
CrossRef Google scholar
[4]
Cooley J W, Tukey J W. An algorithm for the machine calculation of complex Fourier series. Math Comp, 1965, 19: 297–301
CrossRef Google scholar
[5]
Danielson G C, Lanczos C. Some improvements in practical Fourier analysis and their application to X-ray scattering from liquids. J Franklin Inst, 1942, 233: 365–380
CrossRef Google scholar
[6]
Gentleman W M, Sande G. Fast Fourier transforms for fun and profit. In: Fall Joint Computer Conference, Vol 29 of AFIPS Conference Proceedings, Spartan Books, Washington D C. 1966, 563–578
[7]
Goertzel G. An algorithm for the evaluation of finite trigonometric series. Amer Math Monthly, 1958, 65(1): 34–35
CrossRef Google scholar
[8]
Good I J. The interaction algorithm and practical Fourier analysis. J R Stat Soc Ser A, 1958, 20: 361–372
CrossRef Google scholar
[9]
Gray R M, Goodman J W. Fourier Transforms: An Introduction for Engineers. Dordrecht: Kluwer, 1995
CrossRef Google scholar
[10]
Harshman R A. Determination and proof of minimum uniqueness conditions for PARAFAC. UCLA Working Papers in Phonetics, 1972, 22: 111–117
[11]
Huang Z, Qi L Q. Positive definiteness of paired symmetric tensors and elasticity tensors. J Comput Appl Math, 2018, 338: 22–43
CrossRef Google scholar
[12]
Kolda T. Numerical optimization for symmetric tensor decomposition. Math Program, Ser B, 2015, 151: 225–248
CrossRef Google scholar
[13]
Kolda T, Bader B W. Tensor decompositions and applications. SIAM Review, 2009, 51: 455–500
CrossRef Google scholar
[14]
Qi L Q. Eigenvalues and invariants of tensors. J Math Anal Appl, 2007, 325: 1363–1377
CrossRef Google scholar
[15]
Qi L Q. Symmetric nonnegative tensors and copositive tensors. Linear Algebra Appl, 2013, 439: 228–238
CrossRef Google scholar
[16]
Qi L Q, Luo Z Y. Tensor Analysis: Spectral Theory and Special Tensors. Philadelphia: SIAM, 2017
CrossRef Google scholar
[17]
Serre J-P. A Course in Arithmetic. Grad Texts in Math, Vol 7. New York: Springer, 1973
CrossRef Google scholar
[18]
Tao T. High Order Fourier Analysis. Grad Stud Math, Vol 142. Providence: Amer MathSoc, 2012
[19]
Terras A. Fourier Analysis on Finite Groups and Applications. Cambridge: Cambridge Univ Press, 1999
CrossRef Google scholar
[20]
Xu C Q, Wang M Y, Li X. Generalized Vandermonde tensors. Front Math China, 2016, 11(3): 593–603
CrossRef Google scholar
[21]
Xu C Q, Xu Y R. Tensor convolutions and Hankel tensors. Front Math China, 2017, 12(6): 1357–1373
CrossRef Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(329 KB)

Accesses

Citations

Detail

Sections
Recommended

/