RESEARCH ARTICLE

Multipliers, covers, and stem extensions for Lie superalgebras

  • Wende LIU 1 ,
  • Xingxue MIAO , 2
Expand
  • 1. School of Mathematics and Statistics, Hainan Normal University, Haikou 571158, China
  • 2. School of Mathematical Sciences, Harbin Normal University, Harbin 150025, China

Received date: 25 Sep 2020

Accepted date: 19 Jan 2021

Copyright

2021 Higher Education Press

Abstract

Suppose that the underlying field is of characteristic different from 2 and 3. We first prove that the so-called stem deformations of a free presentation of a finite-dimensional Lie superalgebra L exhaust all the maximal stem extensions of L; up to equivalence of extensions. Then we prove that multipliers and covers always exist for a Lie superalgebra and they are unique up to superalgebra isomorphisms. Finally, we describe the multipliers, covers, and maximal stem extensions of Heisenberg superalgebras and model filiform Lie superalgebras.

Cite this article

Wende LIU , Xingxue MIAO . Multipliers, covers, and stem extensions for Lie superalgebras[J]. Frontiers of Mathematics in China, 2021 , 16(4) : 979 -995 . DOI: 10.1007/s11464-021-0907-8

1
Batten P. Multipliers and Covers of Lie Algebras. Ph D Thesis, North Carolina State University, 1993

2
Batten P, Moneyhun K, Stitzinger E. On characterizing nilpotent Lie algebras by their multipliers. Comm Algebra, 1996, 24(14): 4319–4330

DOI

3
Batten P, Stitzinger E. On covers of Lie algebras. Comm Algebra, 1996, 24(14): 4301–4317

DOI

4
Eshrati D, Saeedi F, Darabi H. On the multiplier of nilpotent n-Lie algebras. J Algebra, 2016, 450: 162–172

DOI

5
Fialowski A, Millionschikov D. Cohomology of graded Lie algebras of maximal class. J Algebra, 2006, 296(1): 157–176

DOI

6
Gilg M. Low-dimensional filiform Lie superalgebras. Rev Mat Complut, 2001, 14: 463–478

DOI

7
Hardy P. On characterizing nilpotent Lie algebras by their multipliers, III. Comm Algebra, 2005, 33: 4205–4210

DOI

8
Hardy P, Stitzinger E. On characterizing nilpotent Lie algebras by their multipliers t(L) = 3, 4, 5, 6. Comm Algebra, 1998, 26(11): 3527–3539

DOI

9
Liu W D, Yang Y. Cohomology of model filiform Lie superalgebra. J Algebra Appl, 2018, 17: 1850074

DOI

10
Liu W D, Zhang Y L. Classification of nilpotent Lie superalgebras of multiplier-rank≤2. J Lie Theory, 2020, 30: 1047–1060

11
Moneyhun K. Isoclinisms in Lie algebras. Algebras, Groups and Geometries, 1994, 11: 9–22

12
Nayak S. Multipliers of nilpotent Lie superalgebra. Comm Algebra, 2019, 47: 689–705

DOI

13
Niroomand P. On dimension of the Schur multiplier of nilpotent Lie algebras. Cent Eur J Math, 2001, 9(1): 57–64

DOI

14
Niroomand P, Russo F G. A note on the Schur multiplier of a nilpotent Lie algebra. Comm Algebra, 2011, 39(4): 1293–1297

DOI

15
Rodíguez-Vallarte M C, Salgado G, Sánchez-Valenzuela O A. Heisenberg Lie super-algebras and their invariant superorthogonal and supersymplectic forms. J Algebra, 2011, 332(1): 71–86

DOI

16
Saeedi F, Arabyani H, Niroomand P. On dimension of the Schur multiplier of nilpotent Lie algebras II. Asian-Eur J Math, 2017, 10(4): 1750076

DOI

Outlines

/