Multipliers, covers, and stem extensions for Lie superalgebras

Wende LIU, Xingxue MIAO

PDF(266 KB)
PDF(266 KB)
Front. Math. China ›› 2021, Vol. 16 ›› Issue (4) : 979-995. DOI: 10.1007/s11464-021-0907-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Multipliers, covers, and stem extensions for Lie superalgebras

Author information +
History +

Abstract

Suppose that the underlying field is of characteristic different from 2 and 3. We first prove that the so-called stem deformations of a free presentation of a finite-dimensional Lie superalgebra L exhaust all the maximal stem extensions of L; up to equivalence of extensions. Then we prove that multipliers and covers always exist for a Lie superalgebra and they are unique up to superalgebra isomorphisms. Finally, we describe the multipliers, covers, and maximal stem extensions of Heisenberg superalgebras and model filiform Lie superalgebras.

Keywords

Multiplier / cover / stem extension / Heisenberg superalgebra / filiform Lie supleralgebra

Cite this article

Download citation ▾
Wende LIU, Xingxue MIAO. Multipliers, covers, and stem extensions for Lie superalgebras. Front. Math. China, 2021, 16(4): 979‒995 https://doi.org/10.1007/s11464-021-0907-8

References

[1]
Batten P. Multipliers and Covers of Lie Algebras. Ph D Thesis, North Carolina State University, 1993
[2]
Batten P, Moneyhun K, Stitzinger E. On characterizing nilpotent Lie algebras by their multipliers. Comm Algebra, 1996, 24(14): 4319–4330
CrossRef Google scholar
[3]
Batten P, Stitzinger E. On covers of Lie algebras. Comm Algebra, 1996, 24(14): 4301–4317
CrossRef Google scholar
[4]
Eshrati D, Saeedi F, Darabi H. On the multiplier of nilpotent n-Lie algebras. J Algebra, 2016, 450: 162–172
CrossRef Google scholar
[5]
Fialowski A, Millionschikov D. Cohomology of graded Lie algebras of maximal class. J Algebra, 2006, 296(1): 157–176
CrossRef Google scholar
[6]
Gilg M. Low-dimensional filiform Lie superalgebras. Rev Mat Complut, 2001, 14: 463–478
CrossRef Google scholar
[7]
Hardy P. On characterizing nilpotent Lie algebras by their multipliers, III. Comm Algebra, 2005, 33: 4205–4210
CrossRef Google scholar
[8]
Hardy P, Stitzinger E. On characterizing nilpotent Lie algebras by their multipliers t(L) = 3, 4, 5, 6. Comm Algebra, 1998, 26(11): 3527–3539
CrossRef Google scholar
[9]
Liu W D, Yang Y. Cohomology of model filiform Lie superalgebra. J Algebra Appl, 2018, 17: 1850074
CrossRef Google scholar
[10]
Liu W D, Zhang Y L. Classification of nilpotent Lie superalgebras of multiplier-rank≤2. J Lie Theory, 2020, 30: 1047–1060
[11]
Moneyhun K. Isoclinisms in Lie algebras. Algebras, Groups and Geometries, 1994, 11: 9–22
[12]
Nayak S. Multipliers of nilpotent Lie superalgebra. Comm Algebra, 2019, 47: 689–705
CrossRef Google scholar
[13]
Niroomand P. On dimension of the Schur multiplier of nilpotent Lie algebras. Cent Eur J Math, 2001, 9(1): 57–64
CrossRef Google scholar
[14]
Niroomand P, Russo F G. A note on the Schur multiplier of a nilpotent Lie algebra. Comm Algebra, 2011, 39(4): 1293–1297
CrossRef Google scholar
[15]
Rodíguez-Vallarte M C, Salgado G, Sánchez-Valenzuela O A. Heisenberg Lie super-algebras and their invariant superorthogonal and supersymplectic forms. J Algebra, 2011, 332(1): 71–86
CrossRef Google scholar
[16]
Saeedi F, Arabyani H, Niroomand P. On dimension of the Schur multiplier of nilpotent Lie algebras II. Asian-Eur J Math, 2017, 10(4): 1750076
CrossRef Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(266 KB)

Accesses

Citations

Detail

Sections
Recommended

/