Frontiers of Mathematics in China >
Generalized P(N)-graded Lie superalgebras
Received date: 16 Nov 2020
Accepted date: 17 Dec 2020
Published date: 15 Jun 2021
Copyright
We generalize the P(N)-graded Lie superalgebras of Martinez-Zelmanov. This generalization is not so restrictive but suffcient enough so that we are able to have a classification for this generalized P(N)-graded Lie superalgebras. Our result is that the generalized P(N)-graded Lie super-algebra L is centrally isogenous to a matrix Lie superalgebra coordinated by an associative superalgebra with a super-involution. Moreover, L is P(N)-graded if and only if the coordinate algebra R is commutative and the super-involution is trivial. This recovers Martinez-Zelmanov's theorem for type P(N). We also obtain a generalization of Kac's coordinatization via Tits-Kantor-Koecher construction. Actually, the motivation of this generalization comes from the Fermionic-Bosonic module construction.
Jin CHENG , Yun GAO . Generalized P(N)-graded Lie superalgebras[J]. Frontiers of Mathematics in China, 2021 , 16(3) : 647 -687 . DOI: 10.1007/s11464-021-0888-7
1 |
Benkart G, Elduque A. Lie superalgebras graded by the root system A(m, n). J Lie Theory, 2003, 13(2): 387–400
|
2 |
Benkart G, Elduque A. Lie superalgebras graded by the root system B(m, n). Selecta Math (N S), 2003, 9: 313–360
|
3 |
Benkart G, Elduque A, Martinez C. A(n, n)-graded Lie superalgebras. J Reine Angew Math, 2004, 573: 139–156
|
4 |
Benkart G, Zelmanov E. Lie algebras graded by finite root systems and intersection matrix algebras. Invent Math, 1996, 126(1): 1–45
|
5 |
Berman S, Gao Y, Krylyuk Y. Quantum tori and the structure of elliptic quasi-simple Lie algebras. J Funct Anal, 1996, 135(2): 339–389
|
6 |
Berman S, Moody R V. Lie algebras graded by finite root systems and the intersection matrix algebras of Slodowy. Invent Math, 1992, 108(2): 323–347
|
7 |
Chen H J, Gao Y. BCN-graded Lie algebras arising from fermionic representations. J Algebra, 2007, 308(2): 545–566
|
8 |
Cheng J, Zeng Z T. Irreducible Wakimoto-like Modules for the Lie superalgebra D(2,1;α). Acta Math Sin (Engl Ser), 2018, 40(34): 1578–1588
|
9 |
Feingold A J, Frenkel I B. Classical affine algebras. Adv Math, 1985, 56(2): 117–172
|
10 |
Frenkel I B. Spinor representations of affine Lie algebras. Proc Natl Acad Sci USA, 1980, 77(11): 6303–6306
|
11 |
Gao Y. Fermionic and bosonic representations of the extended affine Lie algebragl glN(ℂq) ˜. Canad Math Bull, 2002, 45(4): 623–633
|
12 |
Kac V G. Lie superalgebras. Adv Math, 1977, 26(1): 8–96
|
13 |
Kac V G. Classification of simple Z-graded Lie superalgebras and simple Jordan superalgebras. Comm Algebra, 1977, 5(13): 1375–1400
|
14 |
Kac V G, Peterson D H. Spin and wedge representations of infinite-dimensional Lie algebras and groups. Proc Natl Acad Sci USA, 1981, 78(6): 3308–3312
|
15 |
Lau M. Bosonic and fermionic representations of Lie algebra central extensions. Adv Math, 2005, 194(2): 225–245
|
16 |
Manin Yu I. Topics in Noncommutative Geometry. M B Porter Lecture Ser. Princeton: Princeton Univ Press, 1991
|
17 |
Martinez C. Simplicity of Jordan superalgebras and relations with Lie structures. Irish Math Soc Bull, 2003, 50: 97–116
|
18 |
Martinez C, Shestakov I, Zelmanov E. Jordan bimodules over the superalgebras P(n) and Q(n). Trans Amer Math Soc, 2010, 362(4): 2037–2051
|
19 |
Martinez C, Zelmanov E. Lie superalgebras graded by P(n) and Q(n). Proc Natl Acad Sci USA, 2003, 100(14): 8130–8137
|
20 |
Neher E. An introduction to universal central extensions of Lie superalgebras. In: Bahturin Yu, ed. Groups, Rings, Lie and Hopf Algebras. Math Appl, Vol 555. Berlin: Springer, 2003, 141–166
|
/
〈 | 〉 |