RESEARCH ARTICLE

Generalized P(N)-graded Lie superalgebras

  • Jin CHENG 1 ,
  • Yun GAO , 2
Expand
  • 1. School of Mathematics and Statistics, Shandong Normal University, Jinan 250014, China
  • 2. Department of Mathematics and Statistics, York University, Toronto, ON M3J 1P3, Canada

Received date: 16 Nov 2020

Accepted date: 17 Dec 2020

Published date: 15 Jun 2021

Copyright

2021 Higher Education Press

Abstract

We generalize the P(N)-graded Lie superalgebras of Martinez-Zelmanov. This generalization is not so restrictive but suffcient enough so that we are able to have a classification for this generalized P(N)-graded Lie superalgebras. Our result is that the generalized P(N)-graded Lie super-algebra L is centrally isogenous to a matrix Lie superalgebra coordinated by an associative superalgebra with a super-involution. Moreover, L is P(N)-graded if and only if the coordinate algebra R is commutative and the super-involution is trivial. This recovers Martinez-Zelmanov's theorem for type P(N). We also obtain a generalization of Kac's coordinatization via Tits-Kantor-Koecher construction. Actually, the motivation of this generalization comes from the Fermionic-Bosonic module construction.

Cite this article

Jin CHENG , Yun GAO . Generalized P(N)-graded Lie superalgebras[J]. Frontiers of Mathematics in China, 2021 , 16(3) : 647 -687 . DOI: 10.1007/s11464-021-0888-7

1
Benkart G, Elduque A. Lie superalgebras graded by the root system A(m, n). J Lie Theory, 2003, 13(2): 387–400

2
Benkart G, Elduque A. Lie superalgebras graded by the root system B(m, n). Selecta Math (N S), 2003, 9: 313–360

DOI

3
Benkart G, Elduque A, Martinez C. A(n, n)-graded Lie superalgebras. J Reine Angew Math, 2004, 573: 139–156

DOI

4
Benkart G, Zelmanov E. Lie algebras graded by finite root systems and intersection matrix algebras. Invent Math, 1996, 126(1): 1–45

DOI

5
Berman S, Gao Y, Krylyuk Y. Quantum tori and the structure of elliptic quasi-simple Lie algebras. J Funct Anal, 1996, 135(2): 339–389

DOI

6
Berman S, Moody R V. Lie algebras graded by finite root systems and the intersection matrix algebras of Slodowy. Invent Math, 1992, 108(2): 323–347

DOI

7
Chen H J, Gao Y. BCN-graded Lie algebras arising from fermionic representations. J Algebra, 2007, 308(2): 545–566

8
Cheng J, Zeng Z T. Irreducible Wakimoto-like Modules for the Lie superalgebra D(2,1;α). Acta Math Sin (Engl Ser), 2018, 40(34): 1578–1588

DOI

9
Feingold A J, Frenkel I B. Classical affine algebras. Adv Math, 1985, 56(2): 117–172

DOI

10
Frenkel I B. Spinor representations of affine Lie algebras. Proc Natl Acad Sci USA, 1980, 77(11): 6303–6306

DOI

11
Gao Y. Fermionic and bosonic representations of the extended affine Lie algebragl glN(ℂq) ˜. Canad Math Bull, 2002, 45(4): 623–633

12
Kac V G. Lie superalgebras. Adv Math, 1977, 26(1): 8–96

DOI

13
Kac V G. Classification of simple Z-graded Lie superalgebras and simple Jordan superalgebras. Comm Algebra, 1977, 5(13): 1375–1400

DOI

14
Kac V G, Peterson D H. Spin and wedge representations of infinite-dimensional Lie algebras and groups. Proc Natl Acad Sci USA, 1981, 78(6): 3308–3312

DOI

15
Lau M. Bosonic and fermionic representations of Lie algebra central extensions. Adv Math, 2005, 194(2): 225–245

DOI

16
Manin Yu I. Topics in Noncommutative Geometry. M B Porter Lecture Ser. Princeton: Princeton Univ Press, 1991

17
Martinez C. Simplicity of Jordan superalgebras and relations with Lie structures. Irish Math Soc Bull, 2003, 50: 97–116

18
Martinez C, Shestakov I, Zelmanov E. Jordan bimodules over the superalgebras P(n) and Q(n). Trans Amer Math Soc, 2010, 362(4): 2037–2051

DOI

19
Martinez C, Zelmanov E. Lie superalgebras graded by P(n) and Q(n). Proc Natl Acad Sci USA, 2003, 100(14): 8130–8137

DOI

20
Neher E. An introduction to universal central extensions of Lie superalgebras. In: Bahturin Yu, ed. Groups, Rings, Lie and Hopf Algebras. Math Appl, Vol 555. Berlin: Springer, 2003, 141–166

DOI

Outlines

/