Generalized P(N)-graded Lie superalgebras

Jin CHENG, Yun GAO

PDF(412 KB)
PDF(412 KB)
Front. Math. China ›› 2021, Vol. 16 ›› Issue (3) : 647-687. DOI: 10.1007/s11464-021-0888-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Generalized P(N)-graded Lie superalgebras

Author information +
History +

Abstract

We generalize the P(N)-graded Lie superalgebras of Martinez-Zelmanov. This generalization is not so restrictive but suffcient enough so that we are able to have a classification for this generalized P(N)-graded Lie superalgebras. Our result is that the generalized P(N)-graded Lie super-algebra L is centrally isogenous to a matrix Lie superalgebra coordinated by an associative superalgebra with a super-involution. Moreover, L is P(N)-graded if and only if the coordinate algebra R is commutative and the super-involution is trivial. This recovers Martinez-Zelmanov's theorem for type P(N). We also obtain a generalization of Kac's coordinatization via Tits-Kantor-Koecher construction. Actually, the motivation of this generalization comes from the Fermionic-Bosonic module construction.

Keywords

Root system graded Lie superalgebras / associative superalgebra / quantum tori / representations

Cite this article

Download citation ▾
Jin CHENG, Yun GAO. Generalized P(N)-graded Lie superalgebras. Front. Math. China, 2021, 16(3): 647‒687 https://doi.org/10.1007/s11464-021-0888-7

References

[1]
Benkart G, Elduque A. Lie superalgebras graded by the root system A(m, n). J Lie Theory, 2003, 13(2): 387–400
[2]
Benkart G, Elduque A. Lie superalgebras graded by the root system B(m, n). Selecta Math (N S), 2003, 9: 313–360
CrossRef Google scholar
[3]
Benkart G, Elduque A, Martinez C. A(n, n)-graded Lie superalgebras. J Reine Angew Math, 2004, 573: 139–156
CrossRef Google scholar
[4]
Benkart G, Zelmanov E. Lie algebras graded by finite root systems and intersection matrix algebras. Invent Math, 1996, 126(1): 1–45
CrossRef Google scholar
[5]
Berman S, Gao Y, Krylyuk Y. Quantum tori and the structure of elliptic quasi-simple Lie algebras. J Funct Anal, 1996, 135(2): 339–389
CrossRef Google scholar
[6]
Berman S, Moody R V. Lie algebras graded by finite root systems and the intersection matrix algebras of Slodowy. Invent Math, 1992, 108(2): 323–347
CrossRef Google scholar
[7]
Chen H J, Gao Y. BCN-graded Lie algebras arising from fermionic representations. J Algebra, 2007, 308(2): 545–566
[8]
Cheng J, Zeng Z T. Irreducible Wakimoto-like Modules for the Lie superalgebra D(2,1;α). Acta Math Sin (Engl Ser), 2018, 40(34): 1578–1588
CrossRef Google scholar
[9]
Feingold A J, Frenkel I B. Classical affine algebras. Adv Math, 1985, 56(2): 117–172
CrossRef Google scholar
[10]
Frenkel I B. Spinor representations of affine Lie algebras. Proc Natl Acad Sci USA, 1980, 77(11): 6303–6306
CrossRef Google scholar
[11]
Gao Y. Fermionic and bosonic representations of the extended affine Lie algebragl glN(ℂq) ˜. Canad Math Bull, 2002, 45(4): 623–633
[12]
Kac V G. Lie superalgebras. Adv Math, 1977, 26(1): 8–96
CrossRef Google scholar
[13]
Kac V G. Classification of simple Z-graded Lie superalgebras and simple Jordan superalgebras. Comm Algebra, 1977, 5(13): 1375–1400
CrossRef Google scholar
[14]
Kac V G, Peterson D H. Spin and wedge representations of infinite-dimensional Lie algebras and groups. Proc Natl Acad Sci USA, 1981, 78(6): 3308–3312
CrossRef Google scholar
[15]
Lau M. Bosonic and fermionic representations of Lie algebra central extensions. Adv Math, 2005, 194(2): 225–245
CrossRef Google scholar
[16]
Manin Yu I. Topics in Noncommutative Geometry. M B Porter Lecture Ser. Princeton: Princeton Univ Press, 1991
[17]
Martinez C. Simplicity of Jordan superalgebras and relations with Lie structures. Irish Math Soc Bull, 2003, 50: 97–116
[18]
Martinez C, Shestakov I, Zelmanov E. Jordan bimodules over the superalgebras P(n) and Q(n). Trans Amer Math Soc, 2010, 362(4): 2037–2051
CrossRef Google scholar
[19]
Martinez C, Zelmanov E. Lie superalgebras graded by P(n) and Q(n). Proc Natl Acad Sci USA, 2003, 100(14): 8130–8137
CrossRef Google scholar
[20]
Neher E. An introduction to universal central extensions of Lie superalgebras. In: Bahturin Yu, ed. Groups, Rings, Lie and Hopf Algebras. Math Appl, Vol 555. Berlin: Springer, 2003, 141–166
CrossRef Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(412 KB)

Accesses

Citations

Detail

Sections
Recommended

/