RESEARCH ARTICLE

Forward and symmetric Wick-Itô integrals with respect to fractional Brownian motion

  • Fuquan XIA 1 ,
  • Litan YAN , 2 ,
  • Jianhui ZHU 2
Expand
  • 1. Department of Mathematics, College of Science, Bengbu University, Bengbu 233030, China
  • 2. Department of Statistics, College of Science, Donghua University, Shanghai 201620, China

Received date: 29 Jul 2020

Accepted date: 11 Jan 2021

Published date: 15 Apr 2021

Copyright

2021 Higher Education Press

Abstract

Let BH={BtH,t0} be a fractional Brownian motion with Hurst index H(0,1). Inspired by pathwise integrals and Wick product, in this paper, we consider the forward and symmetric Wick-Itô integrals with respect to BH as follows:

0tusdBsH=limε01ε0tus(Bs+εHBsH)ds,
0tusd°BsH=limε012ε0tus(Bs+εHB(sε)0H)ds,
in probability, where ◊ denotes the Wick product. We show that the two integrals coincide with divergence-type integral of BH for all H(0,1).

Cite this article

Fuquan XIA , Litan YAN , Jianhui ZHU . Forward and symmetric Wick-Itô integrals with respect to fractional Brownian motion[J]. Frontiers of Mathematics in China, 2021 , 16(2) : 623 -645 . DOI: 10.1007/s11464-021-0923-8

1
Alós E, León J,Nualart D. Stratonovich stochastic calculus with respect to fractional Brownian motion with Hurst parameter less than 1/2. Taiwanesse J Math, 2001, 5: 609–632

DOI

2
Alós E, Mazet O, Nualart D. Stochastic calculus with respect to Gaussian processes. Ann Probab, 2001, 29: 766–801

DOI

3
Biagini F, Hu Y, Øksendal B, Zhang T. Stochastic Calculus for Fractional Brownian Motion and Applications. Berlin and New York: Springer, 2008

DOI

4
Cheridito P,Nualart D. Stochastic integral of divergence type with respect to the fractional Brownian motion with Hurst parameter 1/2. Ann Inst Henri Poincaré Probab Stat, 2005, 41: 1049–1081

DOI

5
Gradinaru M, Nourdin I, Russo F, Vallois P.m-order integrals and generalized Itô's formula; the case of a fractional Brownian motion with any Hurst index. Ann Inst Henri Poincaró Probab Stat, 2005, 41: 781–806

DOI

6
Gradinaru M, Russo F,Vallois P.Generalized covariations, local time and Stratonovich Itô's formula for fractional Brownian motion with Hurst index H≥1/4. Ann Probab, 2003, 31: 1772–1820

7
Hu Y Z. Integral Transformations and Anticipative Calculus for Fractional Brownian Motions. Mem Amer Math Soc, Vol 175, No 825. Providence: Amer Math Soc, 2005

DOI

8
Mishura Y S. Stochastic Calculus for Fractional Brownian Motion and Related Processes. Berlin: Springer, 2008

DOI

9
Nourdin I. Selected Aspects of Fractional Brownian Motion.Berlin:Springer-Verlag, 2012

DOI

10
Nualart D.Stochastic integration with respect to fractional Brownian motion and applications. Contemp Math, 2003, 336: 3–39

DOI

11
Nualart D. The Malliavin Calculus and Related Topics.Berlin: Springer-Verlag, 2006

12
Nualart D,Taqqu M S. Wick-Itô formula for Gaussian processes. Stoch Anal Appl, 2006, 24: 599–614

DOI

13
Pipiras V, Taqqu M. Integration questions related to the fractional Brownian motion. Probab Theory Related Fields, 2001, 118: 251–281

DOI

14
Russo F, Vallois P. Forward, backward and symmetric stochastic integration. Probab Theory Related Fields, 1993, 97: 403–421

DOI

15
Russo F,Vallois P. The generalized covariation process and Itô formula. Stochastic Process Appl, 1995, 59: 81–104

DOI

16
Russo F, Vallois P. Stochastic calculus with respect to continuous finite quadratic variation processes. Stochast Stochast Rep, 2000, 70: 1–40

DOI

17
Sun X, Yan L, Yu X.An integral functional driven by fractional Brownian motion. Stochastic Process Appl, 2019, 129: 2249–2285

DOI

18
Yan L. The fractional derivative for fractional Brownian local time. Math Z, 2016, 283: 437–468

DOI

19
Yan L, Liu J, Chen C. The generalized quadratic covariation for fractional Brownian motion with Hurst index less than 1/2. Infin Dimens Anal Quantum Probab Relat Top, 2014, 17(4): 1{32

DOI

20
Yan L, Liu J, Yang X. Integration with respect to fraction local time with Hurst index 1/2<H<1. Potential Anal, 2009, 30: 115–138

DOI

Outlines

/