Forward and symmetric Wick-Itô integrals with respect to fractional Brownian motion
Fuquan XIA, Litan YAN, Jianhui ZHU
Forward and symmetric Wick-Itô integrals with respect to fractional Brownian motion
Let be a fractional Brownian motion with Hurst index . Inspired by pathwise integrals and Wick product, in this paper, we consider the forward and symmetric Wick-Itô integrals with respect to BH as follows:
in probability, where ◊ denotes the Wick product. We show that the two integrals coincide with divergence-type integral of BH for all .Fractional Brownian motion (fBm) / forward integral / Malliavin calculus / Wick product
[1] |
Alós E, León J,Nualart D. Stratonovich stochastic calculus with respect to fractional Brownian motion with Hurst parameter less than 1/2. Taiwanesse J Math, 2001, 5: 609–632
CrossRef
Google scholar
|
[2] |
Alós E, Mazet O, Nualart D. Stochastic calculus with respect to Gaussian processes. Ann Probab, 2001, 29: 766–801
CrossRef
Google scholar
|
[3] |
Biagini F, Hu Y, Øksendal B, Zhang T. Stochastic Calculus for Fractional Brownian Motion and Applications. Berlin and New York: Springer, 2008
CrossRef
Google scholar
|
[4] |
Cheridito P,Nualart D. Stochastic integral of divergence type with respect to the fractional Brownian motion with Hurst parameter 1/2. Ann Inst Henri Poincaré Probab Stat, 2005, 41: 1049–1081
CrossRef
Google scholar
|
[5] |
Gradinaru M, Nourdin I, Russo F, Vallois P.m-order integrals and generalized Itô's formula; the case of a fractional Brownian motion with any Hurst index. Ann Inst Henri Poincaró Probab Stat, 2005, 41: 781–806
CrossRef
Google scholar
|
[6] |
Gradinaru M, Russo F,Vallois P.Generalized covariations, local time and Stratonovich Itô's formula for fractional Brownian motion with Hurst index H≥1/4. Ann Probab, 2003, 31: 1772–1820
|
[7] |
Hu Y Z. Integral Transformations and Anticipative Calculus for Fractional Brownian Motions. Mem Amer Math Soc, Vol 175, No 825. Providence: Amer Math Soc, 2005
CrossRef
Google scholar
|
[8] |
Mishura Y S. Stochastic Calculus for Fractional Brownian Motion and Related Processes. Berlin: Springer, 2008
CrossRef
Google scholar
|
[9] |
Nourdin I. Selected Aspects of Fractional Brownian Motion.Berlin:Springer-Verlag, 2012
CrossRef
Google scholar
|
[10] |
Nualart D.Stochastic integration with respect to fractional Brownian motion and applications. Contemp Math, 2003, 336: 3–39
CrossRef
Google scholar
|
[11] |
Nualart D. The Malliavin Calculus and Related Topics.Berlin: Springer-Verlag, 2006
|
[12] |
Nualart D,Taqqu M S. Wick-Itô formula for Gaussian processes. Stoch Anal Appl, 2006, 24: 599–614
CrossRef
Google scholar
|
[13] |
Pipiras V, Taqqu M. Integration questions related to the fractional Brownian motion. Probab Theory Related Fields, 2001, 118: 251–281
CrossRef
Google scholar
|
[14] |
Russo F, Vallois P. Forward, backward and symmetric stochastic integration. Probab Theory Related Fields, 1993, 97: 403–421
CrossRef
Google scholar
|
[15] |
Russo F,Vallois P. The generalized covariation process and Itô formula. Stochastic Process Appl, 1995, 59: 81–104
CrossRef
Google scholar
|
[16] |
Russo F, Vallois P. Stochastic calculus with respect to continuous finite quadratic variation processes. Stochast Stochast Rep, 2000, 70: 1–40
CrossRef
Google scholar
|
[17] |
Sun X, Yan L, Yu X.An integral functional driven by fractional Brownian motion. Stochastic Process Appl, 2019, 129: 2249–2285
CrossRef
Google scholar
|
[18] |
Yan L. The fractional derivative for fractional Brownian local time. Math Z, 2016, 283: 437–468
CrossRef
Google scholar
|
[19] |
Yan L, Liu J, Chen C. The generalized quadratic covariation for fractional Brownian motion with Hurst index less than 1/2. Infin Dimens Anal Quantum Probab Relat Top, 2014, 17(4): 1{32
CrossRef
Google scholar
|
[20] |
Yan L, Liu J, Yang X. Integration with respect to fraction local time with Hurst index 1/2<H<1. Potential Anal, 2009, 30: 115–138
CrossRef
Google scholar
|
/
〈 | 〉 |