RESEARCH ARTICLE

Spectral gap of Boltzmann measures on unit circle

  • Yutao MA , 1 ,
  • Zhengliang ZHANG 2
Expand
  • 1. School of Mathematical Sciences & Laboratory of Mathematics and Complex Systems of Ministry of Education, Beijing Normal University, Beijing 100875, China
  • 2. Department of Mathematics and Statistics, Wuhan University, Wuhan 430072, China

Received date: 01 Apr 2020

Accepted date: 14 Dec 2020

Published date: 15 Apr 2021

Copyright

2021 Higher Education Press

Abstract

We give a two sided estimate on the spectral gap for the Boltzmann measures μh on the circle. We prove that the spectral gap is greater than 1 for any h and the spectral gap tends to the positive infinity as h with speed |h|.

Cite this article

Yutao MA , Zhengliang ZHANG . Spectral gap of Boltzmann measures on unit circle[J]. Frontiers of Mathematics in China, 2021 , 16(2) : 559 -566 . DOI: 10.1007/s11464-021-0892-y

1
Bakry D, Gentil I, Ledoux M. Analysis and Geometry of Markov Diffusion Operators. Grundlehren Math Wiss, Vol 348. Cham: Springer, 2014

DOI

2
Barthe F, Ma Y T, Zhang Z L. Logarithmic Sobolev inequalities for harmonic measures on spheres. J Math Pures Appl, 2014, 102: 234–248

DOI

3
Chen M F. Analytic proof of dual variational formula for the first eigenvalue in dimension one. Sci China Math Ser A, 1999, 42(8): 805–815

DOI

4
Chen M F.Explicit bounds of the first eigenvalue. Sci China Math Ser A, 2000, 43 (10): 1051–1059

DOI

5
Chen M F. Variational formulas and approximation theorems for the first eigenvalue in dimension one. Sci China Math Ser A, 2001, 44(4): 409–418

DOI

6
Chen M F. From Markov Chains to Non-equilibrium Particle Systems. 2nd ed.Singapore: World Scientific, 2004

DOI

7
Chen M F, Zhang Y H, Zhao X L. Dual variational formulas for the first Dirichlet eigenvalue on half-line. Sci China Math Ser A, 2003, 46(6): 847–861

DOI

8
Djellout H, Wu L M. Lipschitzian norm estimate of one-dimensional Poisson equations and applications. Ann Inst Henri Poincaré Probab Stat, 2011, 47(2): 450–465

DOI

9
Glimm J,Jaffe A. Quantum Physics: A Functional Integral Point of View. 2nd ed.New York: Springer-Verlag, 1987

DOI

10
Li B, Ma Y T,Zhang Z L. On the spectral gap of Boltzmann measures on the unit sphere. Statist Probab Lett, 2021, 169: 108963

DOI

11
Ma Y T, Zhang Z L. Logarithmic Sobolev and Poincaré inequalities for the circular Cauchy distribution. Electron Commun Probab, 2014, 19(1): 1{9

DOI

12
Zhang Z L, Qian B, Ma Y T. Uniform logarithmic Sobolev inequality for Boltzmann measures with exterior magnetic field over spheres. Acta Appl Math, 2001, 116: 305–315

DOI

Outlines

/