Frontiers of Mathematics in China >
Spectral gap of Boltzmann measures on unit circle
Received date: 01 Apr 2020
Accepted date: 14 Dec 2020
Published date: 15 Apr 2021
Copyright
We give a two sided estimate on the spectral gap for the Boltzmann measures μh on the circle. We prove that the spectral gap is greater than 1 for any and the spectral gap tends to the positive infinity as with speed .
Key words: Boltzmann measure; Poincaré inequality; spectral gap; unit circle
Yutao MA , Zhengliang ZHANG . Spectral gap of Boltzmann measures on unit circle[J]. Frontiers of Mathematics in China, 2021 , 16(2) : 559 -566 . DOI: 10.1007/s11464-021-0892-y
1 |
Bakry D, Gentil I, Ledoux M. Analysis and Geometry of Markov Diffusion Operators. Grundlehren Math Wiss, Vol 348. Cham: Springer, 2014
|
2 |
Barthe F, Ma Y T, Zhang Z L. Logarithmic Sobolev inequalities for harmonic measures on spheres. J Math Pures Appl, 2014, 102: 234–248
|
3 |
Chen M F. Analytic proof of dual variational formula for the first eigenvalue in dimension one. Sci China Math Ser A, 1999, 42(8): 805–815
|
4 |
Chen M F.Explicit bounds of the first eigenvalue. Sci China Math Ser A, 2000, 43 (10): 1051–1059
|
5 |
Chen M F. Variational formulas and approximation theorems for the first eigenvalue in dimension one. Sci China Math Ser A, 2001, 44(4): 409–418
|
6 |
Chen M F. From Markov Chains to Non-equilibrium Particle Systems. 2nd ed.Singapore: World Scientific, 2004
|
7 |
Chen M F, Zhang Y H, Zhao X L. Dual variational formulas for the first Dirichlet eigenvalue on half-line. Sci China Math Ser A, 2003, 46(6): 847–861
|
8 |
Djellout H, Wu L M. Lipschitzian norm estimate of one-dimensional Poisson equations and applications. Ann Inst Henri Poincaré Probab Stat, 2011, 47(2): 450–465
|
9 |
Glimm J,Jaffe A. Quantum Physics: A Functional Integral Point of View. 2nd ed.New York: Springer-Verlag, 1987
|
10 |
Li B, Ma Y T,Zhang Z L. On the spectral gap of Boltzmann measures on the unit sphere. Statist Probab Lett, 2021, 169: 108963
|
11 |
Ma Y T, Zhang Z L. Logarithmic Sobolev and Poincaré inequalities for the circular Cauchy distribution. Electron Commun Probab, 2014, 19(1): 1{9
|
12 |
Zhang Z L, Qian B, Ma Y T. Uniform logarithmic Sobolev inequality for Boltzmann measures with exterior magnetic field over spheres. Acta Appl Math, 2001, 116: 305–315
|
/
〈 | 〉 |