Spectral gap of Boltzmann measures on unit circle

Yutao MA , Zhengliang ZHANG

Front. Math. China ›› 2021, Vol. 16 ›› Issue (2) : 559 -566.

PDF (272KB)
Front. Math. China ›› 2021, Vol. 16 ›› Issue (2) : 559 -566. DOI: 10.1007/s11464-021-0892-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Spectral gap of Boltzmann measures on unit circle

Author information +
History +
PDF (272KB)

Abstract

We give a two sided estimate on the spectral gap for the Boltzmann measures μh on the circle. We prove that the spectral gap is greater than 1 for any h and the spectral gap tends to the positive infinity as h with speed |h|.

Keywords

Boltzmann measure / Poincaré inequality / spectral gap / unit circle

Cite this article

Download citation ▾
Yutao MA, Zhengliang ZHANG. Spectral gap of Boltzmann measures on unit circle. Front. Math. China, 2021, 16(2): 559-566 DOI:10.1007/s11464-021-0892-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bakry D, Gentil I, Ledoux M. Analysis and Geometry of Markov Diffusion Operators. Grundlehren Math Wiss, Vol 348. Cham: Springer, 2014

[2]

Barthe F, Ma Y T, Zhang Z L. Logarithmic Sobolev inequalities for harmonic measures on spheres. J Math Pures Appl, 2014, 102: 234–248

[3]

Chen M F. Analytic proof of dual variational formula for the first eigenvalue in dimension one. Sci China Math Ser A, 1999, 42(8): 805–815

[4]

Chen M F.Explicit bounds of the first eigenvalue. Sci China Math Ser A, 2000, 43 (10): 1051–1059

[5]

Chen M F. Variational formulas and approximation theorems for the first eigenvalue in dimension one. Sci China Math Ser A, 2001, 44(4): 409–418

[6]

Chen M F. From Markov Chains to Non-equilibrium Particle Systems. 2nd ed.Singapore: World Scientific, 2004

[7]

Chen M F, Zhang Y H, Zhao X L. Dual variational formulas for the first Dirichlet eigenvalue on half-line. Sci China Math Ser A, 2003, 46(6): 847–861

[8]

Djellout H, Wu L M. Lipschitzian norm estimate of one-dimensional Poisson equations and applications. Ann Inst Henri Poincaré Probab Stat, 2011, 47(2): 450–465

[9]

Glimm J,Jaffe A. Quantum Physics: A Functional Integral Point of View. 2nd ed.New York: Springer-Verlag, 1987

[10]

Li B, Ma Y T,Zhang Z L. On the spectral gap of Boltzmann measures on the unit sphere. Statist Probab Lett, 2021, 169: 108963

[11]

Ma Y T, Zhang Z L. Logarithmic Sobolev and Poincaré inequalities for the circular Cauchy distribution. Electron Commun Probab, 2014, 19(1): 1{9

[12]

Zhang Z L, Qian B, Ma Y T. Uniform logarithmic Sobolev inequality for Boltzmann measures with exterior magnetic field over spheres. Acta Appl Math, 2001, 116: 305–315

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (272KB)

439

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/