RESEARCH ARTICLE

Diffusion bound and reducibility for discrete Schrödinger equations with tangent potential

  • Shiwen ZHANG ,
  • Zhiyan ZHAO
Expand
  • Department of Mathematics, Nanjing University, Nanjing 210093, China

Received date: 05 Sep 2011

Accepted date: 15 Aug 2012

Published date: 01 Dec 2012

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

In this paper, we consider the lattice Schr¨odinger equations iq ˙n(t)=tanπ(nα+x)qn(t)+ϵ(qn+1(t)+qn-1(t))+δυn(t)|qn(t)|2τ-2qn(t), with α satisfying a certain Diophantine condition, x/, and τ = 1 or 2, where υn(t) is a spatial localized real bounded potential satisfying |υn(t)|Ce-ρ|n|. We prove that the growth of H1 norm of the solution {qn(t)}n is at most logarithmic if the initial data {qn(0)}nH1 for ϵ sufficiently small and a.e. x fixed. Furthermore, suppose that the linear equation has a time quasi-periodic potential, i.e., iq ˙n(t)=tanπ(nα+x)qn(t)+ϵ(qn+1(t)+qn-1(t))+δυn(θ0+tw)qn(t). Then the linear equation can be reduced to an autonomous equation for a.e. x and most values of the frequency vectors ω if ϵ and δ are sufficiently small.

Cite this article

Shiwen ZHANG , Zhiyan ZHAO . Diffusion bound and reducibility for discrete Schrödinger equations with tangent potential[J]. Frontiers of Mathematics in China, 2012 , 7(6) : 1213 -1235 . DOI: 10.1007/s11464-012-0241-2

1
Bellissard J, Lima R, Scoppola E. Localization in ν-dimensional incommensurate structures. Comm Math Phys, 1983, 88: 465-477

DOI

2
Bourgain J. Growth of Sobolev norms in linear Schr¨odinger equation with quasi-periodic potential. Comm Math Phys, 1999, 204: 207-247

DOI

3
Bourgain J. On growth of Sobolev norms in linear Schr¨odinger equation with time dependent potential. J Anal Math, 1999, 77: 315-348

DOI

4
Bourgain J, Wang Weimin. Anderson localization for time quasi-periodic random Schrödinger and wave equations. Comm Math Phys, 2004, 3: 429-466

5
Bourgain J, Wang Weimin. Diffusion bound for a nonlinear Schr¨odinger equation. In: Mathematical Aspect of Nonlinear Dispersive Equations. Ann of Math Stud, Vol 163. Princeton: Princeton University Press, 2007, 21-42

6
Devillard P, Souillard B J. Polynomially decaying transmission for the nonlinear Schrödinger equation in a random medium. J Stat Phys, 1986, 43: 423-439

DOI

7
Eliasson L H, Kuksin S B. On reducibility of Schrödinger equations with quasi-periodic in time potentials. Comm Math Phys, 2009, 286: 125-135

DOI

8
Fröhlich J, Spencer T, Wayne C E. Localization in disordered, nonlinear dynamical systems. J Stat Phys, 1986, 42: 247-274

DOI

9
Geng Jiansheng, Viveros J, Yi Yingfei. Quasi-periodic breathers in Hamiltonian networks of long-range coupling. Phys D, 2008, 237: 2866-2892

DOI

10
Geng Jiansheng, Zhao Zhiyan. Quasi-periodic solutions for One dimensional discrete nonlinear Schr¨odinger equations with tangent potential. Preprint

11
Howland J S. Stationary scattering theory for time-dependent Hamiltonians. Math Ann, 1974, 207: 315-335

DOI

12
Jitomirskaya S. Ergodic Schrödinger operators (on one foot).Proc Sympos Pure Math, 2007, 76: 613-648

13
Nersesyan V. Growth of Sobolev norms and controllability of Schr¨odinger equation. Comm Math Phys, 2009, 290(1): 371-387

DOI

14
Soffer A, Wang Weimin. Anderson localization for time periodic random Schr¨odinger operators. Comm Partial Differential Equations, 2003, 28: 333-347

DOI

15
Wang Weimin. Logarithmic bounds on Sobolev norms for time dependent linear Schrödinger equations. Comm Partial Differential Equations, 2008, 33: 2164-2179

DOI

16
Wang Weimin. Bounded Sobolev norms for linear Schrödinger equations under resonant perturbations. J Funct Anal, 2008, 254: 2926-2946

DOI

17
Wang Weimin, Zhang Zhifei. Long time Anderson localization for the nonlinear random Schr¨odinger equation. J Stat Phys, 2008, 134(5-6): 953-968

18
Yajima K, Kitada H. Bound states and scattering states for time periodic Hamiltonians. Ann Inst H Poincar´e (A), 1983, 39(2): 145-157

19
You Jiangong. Perturbation of lower dimensional tori for Hamiltonian systems. J Differential Equations, 1999, 152: 1-29

DOI

Options
Outlines

/