Frontiers of Mathematics in China >
Derivations for even part of finite-dimensional modular Lie superalgebra
Received date: 10 Mar 2011
Accepted date: 15 Jul 2012
Published date: 01 Dec 2012
Copyright
Y. Z. Zhang and Q. C. Zhang [J. Algebra, 2009, 321: 3601-3619] constructed a new family of finite-dimensional modular Lie superalgebra . Let Ω denote the even part of the Lie superalgebra .We first give the generator sets of the Lie algebra Ω. Then, we reduce the derivation of Ω to a certain form. With the reduced derivation and a torus of Ω, we determine the derivation algebra of Ω.
Key words: Modular Lie superalgebra; derivation algebra; torus
Zhu WEI , Yongzheng ZHANG . Derivations for even part of finite-dimensional modular Lie superalgebra [J]. Frontiers of Mathematics in China, 2012 , 7(6) : 1169 -1194 . DOI: 10.1007/s11464-012-0234-1
1 |
Block R E, Wilson R L. The simple Lie p-algebras of rank two. Ann Math, 1982, 115: 93-168
|
2 |
Kochetkov Y, Leites D. Simple Lie algebras in characteristic 2 recovered from superalgebras and on the notion of a simple finite group. Contemp Math, 1992, 131(2): 59-67
|
3 |
Liu W D, Zhang Y Z. Infinite-dimensional modular odd Hamiltonian Lie superalgebras. Comm Algebra, 2004, 32(6): 2341-2357
|
4 |
Liu W D, Zhang Y Z. Derivations for the even parts of modular Lie superalgebras W and S of Cartan type. arXive: math.R.A/0507521
|
5 |
Liu W D, Zhang Y Z, Wang X L. The derivation algebra of the Cartan type Lie superalgebra HO. J Algebra, 2004, 273: 176-205
|
6 |
Petrogradski V M. Identities in the enveloping algebras for modular Lie superalgebras. J Algebra, 1992, 145: 1-21
|
7 |
Seligman G B. Modular Lie algebras. New York: Springer-Verlag, 1967
|
8 |
Strade H, Farnsteiner R. Modular Lie Algebras and Their Representations. Monographs and Textbooks in pure and Applied Math, 116. New York: Marcel Dekker, Inc, 1988
|
9 |
Wang Y, Zhang Y Z. Derivation algebra Der(H) and central extensions of Lie superalgebras. Comm Algebra, 2004, 32: 4117-4131
|
10 |
Zhang Q C, Zhang Y Z. Derivation algebras of modular Lie superalgebras W and S of Cartan type. Acta Math Sci, 2000, 20(1): 137-144
|
11 |
Zhang Y Z. Z-graded Lie superalgebras with depth one over fields of prime characteristic. Acta Math Sin (Engl Ser), 2002, 18(4): 687-700
|
12 |
Zhang Y Z, Fu H C. Finite-dimensional Hamiltonian Lie superalgebras. Comm Algebra, 2002, 30: 2651-2674
|
13 |
Zhang Y Z, Zhang Q C. The finite-dimensional modular Lie superalgebra Ω. J Algebra, 2009, 321: 3601-3619
|
/
〈 | 〉 |